Early prediction of the transferability of bovine embryos from videomicroscopy
- URL: http://arxiv.org/abs/2501.07945v1
- Date: Tue, 14 Jan 2025 08:56:59 GMT
- Title: Early prediction of the transferability of bovine embryos from videomicroscopy
- Authors: Yasmine Hachani, Patrick Bouthemy, Elisa Fromont, Sylvie Ruffini, Ludivine Laffont, Alline de Paula Reis,
- Abstract summary: We aim to predict the embryo transferability within four days at most, taking 2D time-lapse microscopy videos as input.
We propose a 3D convolutional neural network involving three pathways, which makes it multi-scale in time and able to handle appearance and motion in different ways.
- Score: 3.4030535409936147
- License:
- Abstract: Videomicroscopy is a promising tool combined with machine learning for studying the early development of in vitro fertilized bovine embryos and assessing its transferability as soon as possible. We aim to predict the embryo transferability within four days at most, taking 2D time-lapse microscopy videos as input. We formulate this problem as a supervised binary classification problem for the classes transferable and not transferable. The challenges are three-fold: 1) poorly discriminating appearance and motion, 2) class ambiguity, 3) small amount of annotated data. We propose a 3D convolutional neural network involving three pathways, which makes it multi-scale in time and able to handle appearance and motion in different ways. For training, we retain the focal loss. Our model, named SFR, compares favorably to other methods. Experiments demonstrate its effectiveness and accuracy for our challenging biological task.
Related papers
- Supervised contrastive learning for cell stage classification of animal embryos [3.4030535409936147]
We aim to automatically classify the cell stages of embryos from 2D time-lapse microscopy videos with a deep learning approach.
We focus on the analysis of bovine embryonic development using video microscopy, as we are primarily interested in the application of cattle breeding.
We introduce CLEmbryo, a novel method that leverages supervised contrastive learning combined with focal loss for training, and the lightweight 3D neural network CSN-50 as an encoder.
arXiv Detail & Related papers (2025-02-11T08:30:25Z) - Domain Aware Multi-Task Pretraining of 3D Swin Transformer for T1-weighted Brain MRI [4.453300553789746]
We propose novel domain-aware multi-task learning tasks to pretrain a 3D Swin Transformer for brain magnetic resonance imaging (MRI)
Our method considers the domain knowledge in brain MRI by incorporating brain anatomy and morphology as well as standard pretext tasks adapted for 3D imaging in a contrastive learning setting.
Our method outperforms existing supervised and self-supervised methods in three downstream tasks of Alzheimer's disease classification, Parkinson's disease classification, and age prediction tasks.
arXiv Detail & Related papers (2024-10-01T05:21:02Z) - SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video
Anomaly Detection [108.57862846523858]
We revisit the self-supervised multi-task learning framework, proposing several updates to the original method.
We modernize the 3D convolutional backbone by introducing multi-head self-attention modules.
In our attempt to further improve the model, we study additional self-supervised learning tasks, such as predicting segmentation maps.
arXiv Detail & Related papers (2022-07-16T19:25:41Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI)
Task 1 is centred on medical diagnostics, addressing automatic sleep stage annotation across subjects.
Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets.
arXiv Detail & Related papers (2022-02-14T12:12:20Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3D pose data can now be reliably extracted from multi-view video sequences without manual intervention.
We propose to use it to guide the encoding of neural action representations together with a set of neural and behavioral augmentations.
To reduce the domain gap, during training, we swap neural and behavioral data across animals that seem to be performing similar actions.
arXiv Detail & Related papers (2021-12-02T12:45:46Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Developmental Stage Classification of EmbryosUsing Two-Stream Neural
Network with Linear-Chain Conditional Random Field [74.53314729742966]
We propose a two-stream model for developmental stage classification.
Unlike previous methods, our two-stream model accepts both temporal and image information.
We demonstrate our algorithm on two time-lapse embryo video datasets.
arXiv Detail & Related papers (2021-07-13T19:56:01Z) - Leveraging 3D Information in Unsupervised Brain MRI Segmentation [1.6148039130053087]
Unsupervised Anomaly Detection (UAD) methods are proposed, detecting anomalies as outliers of a healthy model learned using a Variational Autoencoder (VAE)
Here, we propose to perform UAD in a 3D fashion and compare 2D and 3D VAEs.
As a side contribution, we present a new loss function guarantying a robust training. Learning is performed using a multicentric dataset of healthy brain MRIs, and segmentation performances are estimated on White-Matter Hyperintensities and tumors lesions.
arXiv Detail & Related papers (2021-01-26T10:04:57Z) - RADIOGAN: Deep Convolutional Conditional Generative adversarial Network
To Generate PET Images [3.947298454012977]
We propose a deep convolutional conditional generative adversarial network to generate MIP positron emission tomography image (PET)
The advantage of our proposed method consists of one model that is capable of generating different classes of lesions trained on a small sample size for each class of lesion.
In addition, we show that a walk through a latent space can be used as a tool to evaluate the images generated.
arXiv Detail & Related papers (2020-03-19T10:14:40Z) - 2.75D: Boosting learning by representing 3D Medical imaging to 2D
features for small data [54.223614679807994]
3D convolutional neural networks (CNNs) have started to show superior performance to 2D CNNs in numerous deep learning tasks.
Applying transfer learning on 3D CNN is challenging due to a lack of publicly available pre-trained 3D models.
In this work, we proposed a novel 2D strategical representation of volumetric data, namely 2.75D.
As a result, 2D CNN networks can also be used to learn volumetric information.
arXiv Detail & Related papers (2020-02-11T08:24:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.