Differentially Private Distance Query with Asymmetric Noise
- URL: http://arxiv.org/abs/2501.07955v1
- Date: Tue, 14 Jan 2025 09:19:06 GMT
- Title: Differentially Private Distance Query with Asymmetric Noise
- Authors: Weihong Sheng, Jiajun Chen, Chunqiang Hu, Bin Cai, Meng Han, Jiguo Yu,
- Abstract summary: We consider edges as privacy and propose distance publishing mechanisms based on edge DP.
We formally give the definition of asymmetric neighborhoods and propose Individual Asymmetric Differential Privacy.
We introduce two methods to efficiently compute the smooth sensitivity of distance queries in asymmetric neighborhoods.
- Score: 37.18488513802541
- License:
- Abstract: With the growth of online social services, social information graphs are becoming increasingly complex. Privacy issues related to analyzing or publishing on social graphs are also becoming increasingly serious. Since the shortest paths play an important role in graphs, privately publishing the shortest paths or distances has attracted the attention of researchers. Differential privacy (DP) is an excellent standard for preserving privacy. However, existing works to answer the distance query with the guarantee of DP were almost based on the weight private graph assumption, not on the paths themselves. In this paper, we consider edges as privacy and propose distance publishing mechanisms based on edge DP. To address the issue of utility damage caused by large global sensitivities, we revisit studies related to asymmetric neighborhoods in DP with the observation that the distance query is monotonic in asymmetric neighborhoods. We formally give the definition of asymmetric neighborhoods and propose Individual Asymmetric Differential Privacy with higher privacy guarantees in combination with smooth sensitivity. Then, we introduce two methods to efficiently compute the smooth sensitivity of distance queries in asymmetric neighborhoods. Finally, we validate our scheme using both real-world and synthetic datasets, which can reduce the error to $0.0862$.
Related papers
- Enhanced Privacy Bound for Shuffle Model with Personalized Privacy [32.08637708405314]
Differential Privacy (DP) is an enhanced privacy protocol which introduces an intermediate trusted server between local users and a central data curator.
It significantly amplifies the central DP guarantee by anonymizing and shuffling the local randomized data.
This work focuses on deriving the central privacy bound for a more practical setting where personalized local privacy is required by each user.
arXiv Detail & Related papers (2024-07-25T16:11:56Z) - Privacy Profiles for Private Selection [21.162924003105484]
We work out an easy-to-use recipe that bounds privacy profiles of ReportNoisyMax and PrivateTuning using the privacy profiles of the base algorithms they corral.
Our approach improves over all regimes of interest and leads to substantial benefits in end-to-end private learning experiments.
arXiv Detail & Related papers (2024-02-09T08:31:46Z) - Blink: Link Local Differential Privacy in Graph Neural Networks via
Bayesian Estimation [79.64626707978418]
We propose using link local differential privacy over decentralized nodes to train graph neural networks.
Our approach spends the privacy budget separately on links and degrees of the graph for the server to better denoise the graph topology.
Our approach outperforms existing methods in terms of accuracy under varying privacy budgets.
arXiv Detail & Related papers (2023-09-06T17:53:31Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
We consider partial differential privacy (DP), which allows quantifying the privacy guarantee on a per-attribute basis.
In this work, we study several basic data analysis and learning tasks, and design algorithms whose per-attribute privacy parameter is smaller that the best possible privacy parameter for the entire record of a person.
arXiv Detail & Related papers (2022-09-08T22:43:50Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
differential privacy has emerged as the gold standard of privacy, however, when it comes to sharing sparse datasets.
In this work, we consider a variation of $k$-anonymity, which we call smooth-$k$-anonymity, and design simple large-scale algorithms that efficiently provide smooth-$k$-anonymity.
arXiv Detail & Related papers (2022-07-13T17:09:25Z) - Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging [20.39986955578245]
We introduce pairwise network differential privacy, a relaxation of Local Differential Privacy (LDP)
We derive a differentially private decentralized optimization algorithm that alternates between local gradient descent steps and gossip averaging.
Our results show that our algorithms amplify privacy guarantees as a function of the distance between nodes in the graph.
arXiv Detail & Related papers (2022-06-10T13:32:35Z) - Smoothed Differential Privacy [55.415581832037084]
Differential privacy (DP) is a widely-accepted and widely-applied notion of privacy based on worst-case analysis.
In this paper, we propose a natural extension of DP following the worst average-case idea behind the celebrated smoothed analysis.
We prove that any discrete mechanism with sampling procedures is more private than what DP predicts, while many continuous mechanisms with sampling procedures are still non-private under smoothed DP.
arXiv Detail & Related papers (2021-07-04T06:55:45Z) - A Graph Symmetrisation Bound on Channel Information Leakage under
Blowfish Privacy [12.72658988801038]
Blowfish privacy is a recent generalisation of differential privacy that enables improved utility while maintaining privacy policies with semantic guarantees.
This paper relates Blowfish privacy to an important measure of privacy loss of information channels from the communications theory community: min-entropy leakage.
arXiv Detail & Related papers (2020-07-12T12:38:32Z) - A One-Pass Private Sketch for Most Machine Learning Tasks [48.17461258268463]
Differential privacy (DP) is a compelling privacy definition that explains the privacy-utility tradeoff via formal, provable guarantees.
We propose a private sketch that supports a multitude of machine learning tasks including regression, classification, density estimation, and more.
Our sketch consists of randomized contingency tables that are indexed with locality-sensitive hashing and constructed with an efficient one-pass algorithm.
arXiv Detail & Related papers (2020-06-16T17:47:48Z) - Bounding, Concentrating, and Truncating: Unifying Privacy Loss
Composition for Data Analytics [2.614355818010333]
We provide strong privacy loss bounds when an analyst may select pure DP, bounded range (e.g. exponential mechanisms) or concentrated DP mechanisms in any order.
We also provide optimal privacy loss bounds that apply when an analyst can select pure DP and bounded range mechanisms in a batch.
arXiv Detail & Related papers (2020-04-15T17:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.