Artificial Liver Classifier: A New Alternative to Conventional Machine Learning Models
- URL: http://arxiv.org/abs/2501.08074v1
- Date: Tue, 14 Jan 2025 12:42:01 GMT
- Title: Artificial Liver Classifier: A New Alternative to Conventional Machine Learning Models
- Authors: Mahmood A. Jumaah, Yossra H. Ali, Tarik A. Rashid,
- Abstract summary: This paper introduces the Artificial Liver (ALC), a novel supervised learning classifier inspired by the human liver's detoxification function.
The ALC is characterized by its simplicity, speed, hyperparameters-free, ability to reduce overfitting, and effectiveness in addressing multi-classification problems.
It was evaluated on five benchmark machine learning datasets: Iris Flower, Breast Cancer Wisconsin, Wine, Voice Gender, and MNIST.
- Score: 4.395397502990339
- License:
- Abstract: Supervised machine learning classifiers often encounter challenges related to performance, accuracy, and overfitting. This paper introduces the Artificial Liver Classifier (ALC), a novel supervised learning classifier inspired by the human liver's detoxification function. The ALC is characterized by its simplicity, speed, hyperparameters-free, ability to reduce overfitting, and effectiveness in addressing multi-classification problems through straightforward mathematical operations. To optimize the ALC's parameters, an improved FOX optimization algorithm (IFOX) is employed as the training method. The proposed ALC was evaluated on five benchmark machine learning datasets: Iris Flower, Breast Cancer Wisconsin, Wine, Voice Gender, and MNIST. The results demonstrated competitive performance, with the ALC achieving 100% accuracy on the Iris dataset, surpassing logistic regression, multilayer perceptron, and support vector machine. Similarly, on the Breast Cancer dataset, it achieved 99.12% accuracy, outperforming XGBoost and logistic regression. Across all datasets, the ALC consistently exhibited lower overfitting gaps and loss compared to conventional classifiers. These findings highlight the potential of leveraging biological process simulations to develop efficient machine learning models and open new avenues for innovation in the field.
Related papers
- Electroencephalogram Emotion Recognition via AUC Maximization [0.0]
Imbalanced datasets pose significant challenges in areas including neuroscience, cognitive science, and medical diagnostics.
This study addresses the issue class imbalance, using the Liking' label in the DEAP dataset as an example.
arXiv Detail & Related papers (2024-08-16T19:08:27Z) - HEAL: Brain-inspired Hyperdimensional Efficient Active Learning [13.648600396116539]
We introduce Hyperdimensional Efficient Active Learning (HEAL), a novel Active Learning framework tailored for HDC classification.
HEAL proactively annotates unlabeled data points via uncertainty and diversity-guided acquisition, leading to a more efficient dataset annotation and lowering labor costs.
Our evaluation shows that HEAL surpasses a diverse set of baselines in AL quality and achieves notably faster acquisition than many BNN-powered or diversity-guided AL methods.
arXiv Detail & Related papers (2024-02-17T08:41:37Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
Autistic Spectrum Disorder (ASD) is a neurological disease characterized by difficulties with social interaction, communication, and repetitive activities.
This study employs diverse machine learning methods to identify crucial ASD traits, aiming to enhance and automate the diagnostic process.
arXiv Detail & Related papers (2023-09-20T21:23:37Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Extension of Transformational Machine Learning: Classification Problems [0.0]
This study explores the application and performance of Transformational Machine Learning (TML) in drug discovery.
TML, a meta learning algorithm, excels in exploiting common attributes across various domains.
The drug discovery process, which is complex and time-consuming, can benefit greatly from the enhanced prediction accuracy.
arXiv Detail & Related papers (2023-08-07T07:34:18Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - Survival Prediction of Children Undergoing Hematopoietic Stem Cell
Transplantation Using Different Machine Learning Classifiers by Performing
Chi-squared Test and Hyper-parameter Optimization: A Retrospective Analysis [4.067706269490143]
An efficient survival classification model is presented in a comprehensive manner.
A synthetic dataset is generated by imputing the missing values, transforming the data using dummy variable encoding, and compressing the dataset from 59 features to the 11 most correlated features using Chi-squared feature selection.
Several supervised ML methods were trained in this regard, like Decision Tree, Random Forest, Logistic Regression, K-Nearest Neighbors, Gradient Boosting, Ada Boost, and XG Boost.
arXiv Detail & Related papers (2022-01-22T08:01:22Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.