Double Microwave Shielding
- URL: http://arxiv.org/abs/2501.08095v1
- Date: Tue, 14 Jan 2025 13:09:36 GMT
- Title: Double Microwave Shielding
- Authors: Tijs Karman, Niccolò Bigagli, Weijun Yuan, Siwei Zhang, Ian Stevenson, Sebastian Will,
- Abstract summary: We develop double microwave shielding, which has recently enabled cooling to the first Bose-Einstein condensate of polar molecules.
We demonstrate that double microwave shielding effectively suppresses two- and three-body losses.
This opens the door to studying many-body physics with strongly interacting dipolar quantum matter.
- Score: 2.820929542705023
- License:
- Abstract: We develop double microwave shielding, which has recently enabled evaporative cooling to the first Bose-Einstein condensate of polar molecules [Bigagli et al., Nature 631, 289 (2024)]. Two microwave fields of different frequency and polarization are employed to effectively shield polar molecules from inelastic collisions and three-body recombination. Here, we describe in detail the theory of double microwave shielding. We demonstrate that double microwave shielding effectively suppresses two- and three-body losses. Simultaneously, dipolar interactions and the scattering length can be flexibly tuned, enabling comprehensive control over interactions in ultracold gases of polar molecules. We show that this approach works for a wide range of molecules. This opens the door to studying many-body physics with strongly interacting dipolar quantum matter.
Related papers
- Three-Body Recombination of Ultracold Microwave-Shielded Polar Molecules [2.575307730842485]
Ground-state polar molecules dressed with a strong microwave field have field-linked bound states.
Recombination can explain the enhanced loss rates observed at small microwave detunings.
arXiv Detail & Related papers (2024-07-06T00:31:31Z) - An anti-maser for quantum-limited cooling of a microwave cavity [58.720142291102135]
We experimentally demonstrate how to generate a state in condensed matter at moderate cryogenic temperatures.
This state is then used to efficiently remove microwave photons from a cavity.
Such an "anti-maser" device could be extremely beneficial for applications that would normally require cooling to millikelvin temperatures.
arXiv Detail & Related papers (2023-07-24T11:12:29Z) - Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Evaporation of microwave-shielded polar molecules to quantum degeneracy [1.8133492406483585]
We demonstrate cooling of a three-dimensional gas of fermionic sodium-potassium molecules to well below the Fermi temperature using microwave shielding.
The molecules are protected from reaching short range with a repulsive barrier engineered by coupling rotational states with a blue-detuned circularly polarized microwave.
This large elastic-to-inelastic collision ratio allows us to cool the molecular gas down to 21 nanokelvin, corresponding to 0.36 times the Fermi temperature.
arXiv Detail & Related papers (2022-01-13T18:53:27Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Resonant and first-order dipolar interactions between ultracold
molecules in static and microwave electric fields [0.0]
We study collisions between ultracold polar molecules polarized by microwave or static electric fields.
We calculate the loss in two-body collisions that is observable experimentally.
Results are presented numerically for fermionic $23$Na$40$K and bosonic $23$Na$39$K molecules.
arXiv Detail & Related papers (2021-06-03T05:58:20Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Resonant collisional shielding of reactive molecules using electric
fields [2.830197032154302]
We use an external electric field to shift excited collision channels of ultracold molecules into degeneracy with the initial collision channel.
Resonant dipolar interactions mix the channels at long range, dramatically altering the intermolecular potential.
We realize a long-lived sample of polar molecules in large electric fields.
arXiv Detail & Related papers (2020-09-16T04:24:54Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Resonant dipolar collisions of ultracold molecules induced by microwave
dressing [0.0]
We demonstrate microwave dressing on ultracold, fermionic $23$Na$40$K ground-state molecules.
We observe resonant dipolar collisions with cross sections exceeding three times the $s$-wave unitarity limit.
arXiv Detail & Related papers (2020-03-05T18:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.