Dynamic Pricing in High-Speed Railways Using Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2501.08234v1
- Date: Tue, 14 Jan 2025 16:19:25 GMT
- Title: Dynamic Pricing in High-Speed Railways Using Multi-Agent Reinforcement Learning
- Authors: Enrique Adrian Villarrubia-Martin, Luis Rodriguez-Benitez, David Muñoz-Valero, Giovanni Montana, Luis Jimenez-Linares,
- Abstract summary: This paper addresses the challenge of designing effective dynamic pricing strategies in the context of competing and cooperating operators.
A reinforcement learning framework based on a non-zero-sum Markov game is proposed, incorporating random utility models to capture passenger decision making.
- Score: 4.800138615859937
- License:
- Abstract: This paper addresses a critical challenge in the high-speed passenger railway industry: designing effective dynamic pricing strategies in the context of competing and cooperating operators. To address this, a multi-agent reinforcement learning (MARL) framework based on a non-zero-sum Markov game is proposed, incorporating random utility models to capture passenger decision making. Unlike prior studies in areas such as energy, airlines, and mobile networks, dynamic pricing for railway systems using deep reinforcement learning has received limited attention. A key contribution of this paper is a parametrisable and versatile reinforcement learning simulator designed to model a variety of railway network configurations and demand patterns while enabling realistic, microscopic modelling of user behaviour, called RailPricing-RL. This environment supports the proposed MARL framework, which models heterogeneous agents competing to maximise individual profits while fostering cooperative behaviour to synchronise connecting services. Experimental results validate the framework, demonstrating how user preferences affect MARL performance and how pricing policies influence passenger choices, utility, and overall system dynamics. This study provides a foundation for advancing dynamic pricing strategies in railway systems, aligning profitability with system-wide efficiency, and supporting future research on optimising pricing policies.
Related papers
- CITER: Collaborative Inference for Efficient Large Language Model Decoding with Token-Level Routing [56.98081258047281]
CITER enables efficient collaboration between small and large language models (SLMs & LLMs) through a token-level routing strategy.
We formulate router training as a policy optimization, where the router receives rewards based on both the quality of predictions and the inference costs of generation.
Our experiments show that CITER reduces the inference costs while preserving high-quality generation, offering a promising solution for real-time and resource-constrained applications.
arXiv Detail & Related papers (2025-02-04T03:36:44Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.
A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - Dynamic Retail Pricing via Q-Learning -- A Reinforcement Learning Framework for Enhanced Revenue Management [0.0]
This paper explores the application of a reinforcement learning (RL) framework using the Q-Learning algorithm to enhance dynamic pricing strategies in the retail sector.
By creating a simulated retail environment, we demonstrate how RL effectively addresses real-time changes in consumer behavior and market conditions.
arXiv Detail & Related papers (2024-11-27T11:59:06Z) - MetaTrading: An Immersion-Aware Model Trading Framework for Vehicular Metaverse Services [94.61039892220037]
We present a novel immersion-aware model trading framework that incentivizes metaverse users (MUs) to contribute learning models for augmented reality (AR) services in the vehicular metaverse.
Considering dynamic network conditions and privacy concerns, we formulate the reward decisions of MSPs as a multi-agent Markov decision process.
Experimental results demonstrate that the proposed framework can effectively provide higher-value models for object detection and classification in AR services on real AR-related vehicle datasets.
arXiv Detail & Related papers (2024-10-25T16:20:46Z) - Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning [67.95280175998792]
A novel adversarial imitation learning (GAIL)-powered policy learning approach is proposed for optimizing beamforming, spectrum allocation, and remote user equipment (RUE) association ins.
We employ inverse RL (IRL) to automatically learn reward functions without manual tuning.
We show that the proposed MA-AL method outperforms traditional RL approaches, achieving a $14.6%$ improvement in convergence and reward value.
arXiv Detail & Related papers (2024-09-27T13:05:02Z) - Leveraging Optimal Transport for Enhanced Offline Reinforcement Learning
in Surgical Robotic Environments [4.2569494803130565]
We introduce an innovative algorithm designed to assign rewards to offline trajectories, using a small number of high-quality expert demonstrations.
This approach circumvents the need for handcrafted rewards, unlocking the potential to harness vast datasets for policy learning.
arXiv Detail & Related papers (2023-10-13T03:39:15Z) - Insurance pricing on price comparison websites via reinforcement
learning [7.023335262537794]
This paper introduces reinforcement learning framework that learns optimal pricing policy by integrating model-based and model-free methods.
The paper also highlights the importance of evaluating pricing policies using an offline dataset in a consistent fashion.
arXiv Detail & Related papers (2023-08-14T04:44:56Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
We consider a dynamic model with the consumers' preferences as well as price sensitivity varying over time.
We measure the performance of a dynamic pricing policy via regret, which is the expected revenue loss compared to a clairvoyant that knows the sequence of model parameters in advance.
Our regret analysis results not only demonstrate optimality of the proposed policy but also show that for policy planning it is essential to incorporate available structural information.
arXiv Detail & Related papers (2023-03-28T00:23:23Z) - A Modular and Transferable Reinforcement Learning Framework for the
Fleet Rebalancing Problem [2.299872239734834]
We propose a modular framework for fleet rebalancing based on model-free reinforcement learning (RL)
We formulate RL state and action spaces as distributions over a grid of the operating area, making the framework scalable.
Numerical experiments, using real-world trip and network data, demonstrate that this approach has several distinct advantages over baseline methods.
arXiv Detail & Related papers (2021-05-27T16:32:28Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.