Is Stochastic Gradient Descent Effective? A PDE Perspective on Machine Learning processes
- URL: http://arxiv.org/abs/2501.08425v1
- Date: Tue, 14 Jan 2025 20:33:30 GMT
- Title: Is Stochastic Gradient Descent Effective? A PDE Perspective on Machine Learning processes
- Authors: Davide Barbieri, Matteo Bonforte, Peio Ibarrondo,
- Abstract summary: We analyze the gradient descent (SGD), a widely used method in supervised learning.
We exploit two different: duality methods entropy and dynamics.
- Score: 0.0
- License:
- Abstract: In this paper we analyze the behaviour of the stochastic gradient descent (SGD), a widely used method in supervised learning for optimizing neural network weights via a minimization of non-convex loss functions. Since the pioneering work of E, Li and Tai (2017), the underlying structure of such processes can be understood via parabolic PDEs of Fokker-Planck type, which are at the core of our analysis. Even if Fokker-Planck equations have a long history and a extensive literature, almost nothing is known when the potential is non-convex or when the diffusion matrix is degenerate, and this is the main difficulty that we face in our analysis. We identify two different regimes: in the initial phase of SGD, the loss function drives the weights to concentrate around the nearest local minimum. We refer to this phase as the drift regime and we provide quantitative estimates on this concentration phenomenon. Next, we introduce the diffusion regime, where stochastic fluctuations help the learning process to escape suboptimal local minima. We analyze the Mean Exit Time (MET) and prove upper and lower bounds of the MET. Finally, we address the asymptotic convergence of SGD, for a non-convex cost function and a degenerate diffusion matrix, that do not allow to use the standard approaches, and require new techniques. For this purpose, we exploit two different methods: duality and entropy methods. We provide new results about the dynamics and effectiveness of SGD, offering a deep connection between stochastic optimization and PDE theory, and some answers and insights to basic questions in the Machine Learning processes: How long does SGD take to escape from a bad minimum? Do neural network parameters converge using SGD? How do parameters evolve in the first stage of training with SGD?
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Machine learning in and out of equilibrium [58.88325379746631]
Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels.
We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium.
We propose a new variation of Langevin dynamics (SGLD) that harnesses without replacement minibatching.
arXiv Detail & Related papers (2023-06-06T09:12:49Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Beyond the Edge of Stability via Two-step Gradient Updates [49.03389279816152]
Gradient Descent (GD) is a powerful workhorse of modern machine learning.
GD's ability to find local minimisers is only guaranteed for losses with Lipschitz gradients.
This work focuses on simple, yet representative, learning problems via analysis of two-step gradient updates.
arXiv Detail & Related papers (2022-06-08T21:32:50Z) - The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
and Anomalous Diffusion [29.489737359897312]
We study the limiting dynamics of deep neural networks trained with gradient descent (SGD)
We show that the key ingredient driving these dynamics is not the original training loss, but rather the combination of a modified loss, which implicitly regularizes the velocity and probability currents, which cause oscillations in phase space.
arXiv Detail & Related papers (2021-07-19T20:18:57Z) - Direction Matters: On the Implicit Bias of Stochastic Gradient Descent
with Moderate Learning Rate [105.62979485062756]
This paper attempts to characterize the particular regularization effect of SGD in the moderate learning rate regime.
We show that SGD converges along the large eigenvalue directions of the data matrix, while GD goes after the small eigenvalue directions.
arXiv Detail & Related papers (2020-11-04T21:07:52Z) - Momentum via Primal Averaging: Theoretical Insights and Learning Rate
Schedules for Non-Convex Optimization [10.660480034605241]
Momentum methods are now used pervasively within the machine learning community for non-training models such as deep neural networks.
In this work we develop a Lyapunov analysis of SGD with momentum, by utilizing the SGD equivalent rewriting of the primal SGD method known as the SGDSPA) form.
arXiv Detail & Related papers (2020-10-01T13:46:32Z) - Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum
under Heavy-Tailed Gradient Noise [39.9241638707715]
We show that FULD has similarities with enatural and egradient methods on their role in deep learning.
arXiv Detail & Related papers (2020-02-13T18:04:27Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.