Normalize Then Propagate: Efficient Homophilous Regularization for Few-shot Semi-Supervised Node Classification
- URL: http://arxiv.org/abs/2501.08581v1
- Date: Wed, 15 Jan 2025 05:01:14 GMT
- Title: Normalize Then Propagate: Efficient Homophilous Regularization for Few-shot Semi-Supervised Node Classification
- Authors: Baoming Zhang, MingCai Chen, Jianqing Song, Shuangjie Li, Jie Zhang, Chongjun Wang,
- Abstract summary: Graph Neural Networks (GNNs) have demonstrated remarkable ability in semi-supervised node classification.
Most existing GNNs rely heavily on a large amount of labeled data for training, which is labor-intensive and requires extensive domain knowledge.
We propose a novel algorithm named NormProp, which utilizes the homophily assumption of unlabeled nodes to generate additional supervision signals.
- Score: 7.704427722704987
- License:
- Abstract: Graph Neural Networks (GNNs) have demonstrated remarkable ability in semi-supervised node classification. However, most existing GNNs rely heavily on a large amount of labeled data for training, which is labor-intensive and requires extensive domain knowledge. In this paper, we first analyze the restrictions of GNNs generalization from the perspective of supervision signals in the context of few-shot semi-supervised node classification. To address these challenges, we propose a novel algorithm named NormProp, which utilizes the homophily assumption of unlabeled nodes to generate additional supervision signals, thereby enhancing the generalization against label scarcity. The key idea is to efficiently capture both the class information and the consistency of aggregation during message passing, via decoupling the direction and Euclidean norm of node representations. Moreover, we conduct a theoretical analysis to determine the upper bound of Euclidean norm, and then propose homophilous regularization to constraint the consistency of unlabeled nodes. Extensive experiments demonstrate that NormProp achieve state-of-the-art performance under low-label rate scenarios with low computational complexity.
Related papers
- Generative Semi-supervised Graph Anomaly Detection [42.02691404704764]
This work considers a practical semi-supervised graph anomaly detection (GAD) scenario, where part of the nodes in a graph are known to be normal.
We propose a novel Generative GAD approach (namely GGAD) for the semi-supervised scenario to better exploit the normal nodes.
GGAD is designed to leverage two important priors about the anomaly nodes -- asymmetric local affinity and egocentric closeness.
arXiv Detail & Related papers (2024-02-19T06:55:50Z) - Improving Expressivity of GNNs with Subgraph-specific Factor Embedded
Normalization [30.86182962089487]
Graph Neural Networks (GNNs) have emerged as a powerful category of learning architecture for handling graph-structured data.
We propose a dedicated plug-and-play normalization scheme, termed as SUbgraph-sPEcific FactoR Embedded Normalization (SuperNorm)
arXiv Detail & Related papers (2023-05-31T14:37:31Z) - Pseudo Contrastive Learning for Graph-based Semi-supervised Learning [67.37572762925836]
Pseudo Labeling is a technique used to improve the performance of Graph Neural Networks (GNNs)
We propose a general framework for GNNs, termed Pseudo Contrastive Learning (PCL)
arXiv Detail & Related papers (2023-02-19T10:34:08Z) - Revisiting Heterophily For Graph Neural Networks [42.41238892727136]
Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using graph structures based on the relational inductive bias (homophily assumption)
Recent work has identified a non-trivial set of datasets where their performance compared to NNs is not satisfactory.
arXiv Detail & Related papers (2022-10-14T08:00:26Z) - ResNorm: Tackling Long-tailed Degree Distribution Issue in Graph Neural
Networks via Normalization [80.90206641975375]
This paper focuses on improving the performance of GNNs via normalization.
By studying the long-tailed distribution of node degrees in the graph, we propose a novel normalization method for GNNs.
The $scale$ operation of ResNorm reshapes the node-wise standard deviation (NStd) distribution so as to improve the accuracy of tail nodes.
arXiv Detail & Related papers (2022-06-16T13:49:09Z) - On the Equivalence of Decoupled Graph Convolution Network and Label
Propagation [60.34028546202372]
Some work shows that coupling is inferior to decoupling, which supports deep graph propagation better.
Despite effectiveness, the working mechanisms of the decoupled GCN are not well understood.
We propose a new label propagation method named propagation then training Adaptively (PTA), which overcomes the flaws of the decoupled GCN.
arXiv Detail & Related papers (2020-10-23T13:57:39Z) - Label-Consistency based Graph Neural Networks for Semi-supervised Node
Classification [47.753422069515366]
Graph neural networks (GNNs) achieve remarkable success in graph-based semi-supervised node classification.
In this paper, we propose label-consistency based graph neural network(LC-GNN), leveraging node pairs unconnected but with the same labels to enlarge the receptive field of nodes in GNNs.
Experiments on benchmark datasets demonstrate the proposed LC-GNN outperforms traditional GNNs in graph-based semi-supervised node classification.
arXiv Detail & Related papers (2020-07-27T11:17:46Z) - Unifying Graph Convolutional Neural Networks and Label Propagation [73.82013612939507]
We study the relationship between LPA and GCN in terms of two aspects: feature/label smoothing and feature/label influence.
Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification.
Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models.
arXiv Detail & Related papers (2020-02-17T03:23:13Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
We propose a Graph Inference Learning framework to boost the performance of semi-supervised node classification.
For learning the inference process, we introduce meta-optimization on structure relations from training nodes to validation nodes.
Comprehensive evaluations on four benchmark datasets demonstrate the superiority of our proposed GIL when compared against state-of-the-art methods.
arXiv Detail & Related papers (2020-01-17T02:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.