PACF: Prototype Augmented Compact Features for Improving Domain Adaptive Object Detection
- URL: http://arxiv.org/abs/2501.08605v1
- Date: Wed, 15 Jan 2025 06:05:57 GMT
- Title: PACF: Prototype Augmented Compact Features for Improving Domain Adaptive Object Detection
- Authors: Chenguang Liu, Yongchao Feng, Yanan Zhang, Qingjie Liu, Yunhong Wang,
- Abstract summary: We propose the Prototype Augmented Compact Features framework to regularize the distribution of intra-class features.
A mutual regularization strategy is designed to enable the linear and prototype-based classifiers to learn from each other.
The results on different adaptation settings are state-of-the-art, which demonstrate the board applicability and effectiveness of the proposed approach.
- Score: 34.988894739426954
- License:
- Abstract: In recent years, there has been significant advancement in object detection. However, applying off-the-shelf detectors to a new domain leads to significant performance drop, caused by the domain gap. These detectors exhibit higher-variance class-conditional distributions in the target domain than that in the source domain, along with mean shift. To address this problem, we propose the Prototype Augmented Compact Features (PACF) framework to regularize the distribution of intra-class features. Specifically, we provide an in-depth theoretical analysis on the lower bound of the target features-related likelihood and derive the prototype cross entropy loss to further calibrate the distribution of target RoI features. Furthermore, a mutual regularization strategy is designed to enable the linear and prototype-based classifiers to learn from each other, promoting feature compactness while enhancing discriminability. Thanks to this PACF framework, we have obtained a more compact cross-domain feature space, within which the variance of the target features' class-conditional distributions has significantly decreased, and the class-mean shift between the two domains has also been further reduced. The results on different adaptation settings are state-of-the-art, which demonstrate the board applicability and effectiveness of the proposed approach.
Related papers
- CASUAL: Conditional Support Alignment for Domain Adaptation with Label Shift [9.2929174544214]
Unsupervised domain adaptation (UDA) refers to a domain adaptation framework in which a learning model is trained based on the labeled samples on the source domain and unlabeled ones in the target domain.
We propose a novel Conditional Adversarial SUpport ALignment (CASUAL) whose aim is to minimize the conditional symmetric support divergence between the source's and target domain's feature representation distributions.
arXiv Detail & Related papers (2023-05-29T05:20:18Z) - Towards Category and Domain Alignment: Category-Invariant Feature
Enhancement for Adversarial Domain Adaptation [16.229317527580072]
We propose category-invariant feature enhancement (CIFE) to boost the discriminability of domain-invariant features.
Experiments show that the CIFE could improve upon representative adversarial domain adaptation methods to yield state-of-the-art results.
arXiv Detail & Related papers (2021-08-14T16:51:39Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Re-energizing Domain Discriminator with Sample Relabeling for
Adversarial Domain Adaptation [88.86865069583149]
Unsupervised domain adaptation (UDA) methods exploit domain adversarial training to align the features to reduce domain gap.
In this work, we propose an efficient optimization strategy named Re-enforceable Adversarial Domain Adaptation (RADA)
RADA aims to re-energize the domain discriminator during the training by using dynamic domain labels.
arXiv Detail & Related papers (2021-03-22T08:32:55Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
We propose a novel margin preserving self-paced contrastive Learning model for cross-modal medical image segmentation.
With the guidance of progressively refined semantic prototypes, a novel margin preserving contrastive loss is proposed to boost the discriminability of embedded representation space.
Experiments on cross-modal cardiac segmentation tasks demonstrate that MPSCL significantly improves semantic segmentation performance.
arXiv Detail & Related papers (2021-03-15T15:23:10Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Target Consistency for Domain Adaptation: when Robustness meets
Transferability [8.189696720657247]
Learning Invariant Representations has been successfully applied for reconciling a source and a target domain for Unsupervised Domain Adaptation.
We show that the cluster assumption is violated in the target domain despite being maintained in the source domain.
Our new approach results in a significant improvement, on both image classification and segmentation benchmarks.
arXiv Detail & Related papers (2020-06-25T09:13:00Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
This paper proposes a novel coarse-to-fine feature adaptation approach to cross-domain object detection.
At the coarse-grained stage, foreground regions are extracted by adopting the attention mechanism, and aligned according to their marginal distributions.
At the fine-grained stage, we conduct conditional distribution alignment of foregrounds by minimizing the distance of global prototypes with the same category but from different domains.
arXiv Detail & Related papers (2020-03-23T13:40:06Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information.
Conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure.
We propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains.
arXiv Detail & Related papers (2020-02-12T09:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.