Joint Learning of Depth and Appearance for Portrait Image Animation
- URL: http://arxiv.org/abs/2501.08649v1
- Date: Wed, 15 Jan 2025 08:24:35 GMT
- Title: Joint Learning of Depth and Appearance for Portrait Image Animation
- Authors: Xinya Ji, Gaspard Zoss, Prashanth Chandran, Lingchen Yang, Xun Cao, Barbara Solenthaler, Derek Bradley,
- Abstract summary: We propose to jointly learn the visual appearance and depth simultaneously in a diffusion-based portrait image generator.
Our framework can be efficiently adapted to various downstream applications, such as facial depth-to-image and image-to-depth generation.
- Score: 20.83495988491606
- License:
- Abstract: 2D portrait animation has experienced significant advancements in recent years. Much research has utilized the prior knowledge embedded in large generative diffusion models to enhance high-quality image manipulation. However, most methods only focus on generating RGB images as output, and the co-generation of consistent visual plus 3D output remains largely under-explored. In our work, we propose to jointly learn the visual appearance and depth simultaneously in a diffusion-based portrait image generator. Our method embraces the end-to-end diffusion paradigm and introduces a new architecture suitable for learning this conditional joint distribution, consisting of a reference network and a channel-expanded diffusion backbone. Once trained, our framework can be efficiently adapted to various downstream applications, such as facial depth-to-image and image-to-depth generation, portrait relighting, and audio-driven talking head animation with consistent 3D output.
Related papers
- Zero-Shot Novel View and Depth Synthesis with Multi-View Geometric Diffusion [27.836518920611557]
We introduce MVGD, a diffusion-based architecture capable of direct pixel-level generation of images and depth maps from novel viewpoints.
We train this model on a collection of more than 60 million multi-view samples from publicly available datasets.
We report state-of-the-art results in multiple novel view synthesis benchmarks, as well as multi-view stereo and video depth estimation.
arXiv Detail & Related papers (2025-01-30T23:43:06Z) - DreamDance: Animating Human Images by Enriching 3D Geometry Cues from 2D Poses [57.17501809717155]
We present DreamDance, a novel method for animating human images using only skeleton pose sequences as conditional inputs.
Our key insight is that human images naturally exhibit multiple levels of correlation.
We construct the TikTok-Dance5K dataset, comprising 5K high-quality dance videos with detailed frame annotations.
arXiv Detail & Related papers (2024-11-30T08:42:13Z) - Towards High-Fidelity 3D Portrait Generation with Rich Details by Cross-View Prior-Aware Diffusion [63.81544586407943]
Single-image 3D portrait generation methods typically employ 2D diffusion models to provide multi-view knowledge, which is then distilled into 3D representations.
We propose a Hybrid Priors Diffsion model, which explicitly and implicitly incorporates multi-view priors as conditions to enhance the status consistency of the generated multi-view portraits.
Experiments demonstrate that our method can produce 3D portraits with accurate geometry and rich details from a single image.
arXiv Detail & Related papers (2024-11-15T17:19:18Z) - Pixel-Aligned Multi-View Generation with Depth Guided Decoder [86.1813201212539]
We propose a novel method for pixel-level image-to-multi-view generation.
Unlike prior work, we incorporate attention layers across multi-view images in the VAE decoder of a latent video diffusion model.
Our model enables better pixel alignment across multi-view images.
arXiv Detail & Related papers (2024-08-26T04:56:41Z) - Bootstrap3D: Improving Multi-view Diffusion Model with Synthetic Data [80.92268916571712]
A critical bottleneck is the scarcity of high-quality 3D objects with detailed captions.
We propose Bootstrap3D, a novel framework that automatically generates an arbitrary quantity of multi-view images.
We have generated 1 million high-quality synthetic multi-view images with dense descriptive captions.
arXiv Detail & Related papers (2024-05-31T17:59:56Z) - MVD-Fusion: Single-view 3D via Depth-consistent Multi-view Generation [54.27399121779011]
We present MVD-Fusion: a method for single-view 3D inference via generative modeling of multi-view-consistent RGB-D images.
We show that our approach can yield more accurate synthesis compared to recent state-of-the-art, including distillation-based 3D inference and prior multi-view generation methods.
arXiv Detail & Related papers (2024-04-04T17:59:57Z) - Envision3D: One Image to 3D with Anchor Views Interpolation [18.31796952040799]
We present Envision3D, a novel method for efficiently generating high-quality 3D content from a single image.
It is capable of generating high-quality 3D content in terms of texture and geometry, surpassing previous image-to-3D baseline methods.
arXiv Detail & Related papers (2024-03-13T18:46:33Z) - Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3D is a novel method for efficiently generating high-fidelity textured meshes from single-view images.
To holistically improve the quality, consistency, and efficiency of image-to-3D tasks, we propose a cross-domain diffusion model.
arXiv Detail & Related papers (2023-10-23T15:02:23Z) - 3D-aware Image Generation using 2D Diffusion Models [23.150456832947427]
We formulate the 3D-aware image generation task as multiview 2D image set generation, and further to a sequential unconditional-conditional multiview image generation process.
We utilize 2D diffusion models to boost the generative modeling power of the method.
We train our method on a large-scale dataset, i.e., ImageNet, which is not addressed by previous methods.
arXiv Detail & Related papers (2023-03-31T09:03:18Z) - Explicitly Controllable 3D-Aware Portrait Generation [42.30481422714532]
We propose a 3D portrait generation network that produces consistent portraits according to semantic parameters regarding pose, identity, expression and lighting.
Our method outperforms prior arts in extensive experiments, producing realistic portraits with vivid expression in natural lighting when viewed in free viewpoint.
arXiv Detail & Related papers (2022-09-12T17:40:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.