RouteNet-Gauss: Hardware-Enhanced Network Modeling with Machine Learning
- URL: http://arxiv.org/abs/2501.08848v1
- Date: Wed, 15 Jan 2025 15:00:11 GMT
- Title: RouteNet-Gauss: Hardware-Enhanced Network Modeling with Machine Learning
- Authors: Carlos Güemes-Palau, Miquel Ferriol-Galmés, Jordi Paillisse-Vilanova, Albert López-Brescó, Pere Barlet-Ros, Albert Cabellos-Aparicio,
- Abstract summary: This paper introduces RouteNet-Gauss, a novel integration of a testbed network with a Machine Learning (ML) model to address these challenges.
By using the testbed as a hardware accelerator, RouteNet-Gauss generates training datasets rapidly and simulates network scenarios with high fidelity to real-world conditions.
Experimental results show that RouteNet-Gauss significantly reduces prediction errors by up to 95% and achieves a 488x speedup in inference time compared to state-of-the-art DES-based methods.
- Score: 5.381741076460799
- License:
- Abstract: Network simulation is pivotal in network modeling, assisting with tasks ranging from capacity planning to performance estimation. Traditional approaches such as Discrete Event Simulation (DES) face limitations in terms of computational cost and accuracy. This paper introduces RouteNet-Gauss, a novel integration of a testbed network with a Machine Learning (ML) model to address these challenges. By using the testbed as a hardware accelerator, RouteNet-Gauss generates training datasets rapidly and simulates network scenarios with high fidelity to real-world conditions. Experimental results show that RouteNet-Gauss significantly reduces prediction errors by up to 95% and achieves a 488x speedup in inference time compared to state-of-the-art DES-based methods. RouteNet-Gauss's modular architecture is dynamically constructed based on the specific characteristics of the network scenario, such as topology and routing. This enables it to understand and generalize to different network configurations beyond those seen during training, including networks up to 10x larger. Additionally, it supports Temporal Aggregated Performance Estimation (TAPE), providing configurable temporal granularity and maintaining high accuracy in flow performance metrics. This approach shows promise in improving both simulation efficiency and accuracy, offering a valuable tool for network operators.
Related papers
- NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records.
We address challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection.
arXiv Detail & Related papers (2024-12-30T00:47:49Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - RACH Traffic Prediction in Massive Machine Type Communications [5.416701003120508]
This paper presents a machine learning-based framework tailored for forecasting bursty traffic in ALOHA networks.
We develop a new low-complexity online prediction algorithm that updates the states of the LSTM network by leveraging frequently collected data from the mMTC network.
We evaluate the performance of the proposed framework in a network with a single base station and thousands of devices organized into groups with distinct traffic-generating characteristics.
arXiv Detail & Related papers (2024-05-08T17:28:07Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Building a Graph-based Deep Learning network model from captured traffic
traces [4.671648049111933]
State of the art network models are based or depend on Discrete Event Simulation (DES)
DES is highly accurate, it is also computationally costly and cumbersome to parallelize, making it unpractical to simulate high performance networks.
We propose a Graph Neural Network (GNN)-based solution specifically designed to better capture the complexities of real network scenarios.
arXiv Detail & Related papers (2023-10-18T11:16:32Z) - RouteNet-Fermi: Network Modeling with Graph Neural Networks [7.227467283378366]
We present RouteNet-Fermi, a custom Graph Neural Networks (GNN) model that shares the same goals as Queuing Theory.
The proposed model predicts accurately the delay, jitter, and packet loss of a network.
Our experimental results show that RouteNet-Fermi achieves similar accuracy as computationally-expensive packet-level simulators.
arXiv Detail & Related papers (2022-12-22T23:02:40Z) - RouteNet-Erlang: A Graph Neural Network for Network Performance
Evaluation [5.56275556529722]
We present emphRouteNet-Erlang, a pioneering GNN architecture designed to model computer networks.
RouteNet-Erlang supports complex traffic models, multi-queue scheduling policies, routing policies and can provide accurate estimates.
We benchmark RouteNet-Erlang against a state-of-the-art QT model, and our results show that it outperforms QT in all the network scenarios.
arXiv Detail & Related papers (2022-02-28T17:09:53Z) - Dynamic Slimmable Network [105.74546828182834]
We develop a dynamic network slimming regime named Dynamic Slimmable Network (DS-Net)
Our DS-Net is empowered with the ability of dynamic inference by the proposed double-headed dynamic gate.
It consistently outperforms its static counterparts as well as state-of-the-art static and dynamic model compression methods.
arXiv Detail & Related papers (2021-03-24T15:25:20Z) - Applying Graph-based Deep Learning To Realistic Network Scenarios [5.453745629140304]
This paper presents a new Graph-based deep learning model able to estimate accurately the per-path mean delay in networks.
The proposed model can generalize successfully over topologies, routing configurations, queue scheduling policies and traffic matrices unseen during the training phase.
arXiv Detail & Related papers (2020-10-13T20:58:59Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
This paper is on highly accurate and highly efficient human pose estimation.
We re-analyze this design choice in the context of improving both the accuracy and the efficiency over the state-of-the-art.
Our model achieves state-of-the-art results on the MPII and LSP datasets.
arXiv Detail & Related papers (2020-02-25T18:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.