Generative Planning with 3D-vision Language Pre-training for End-to-End Autonomous Driving
- URL: http://arxiv.org/abs/2501.08861v1
- Date: Wed, 15 Jan 2025 15:20:46 GMT
- Title: Generative Planning with 3D-vision Language Pre-training for End-to-End Autonomous Driving
- Authors: Tengpeng Li, Hanli Wang, Xianfei Li, Wenlong Liao, Tao He, Pai Peng,
- Abstract summary: generative planning with 3D-vision language pre-training model named GPVL is proposed for end-to-end autonomous driving.
Cross-modal language model is introduced to generate holistic driving decisions and fine-grained trajectories.
It is believed that the effective, robust and efficient performance of GPVL is crucial for the practical application of future autonomous driving systems.
- Score: 20.33096710167997
- License:
- Abstract: Autonomous driving is a challenging task that requires perceiving and understanding the surrounding environment for safe trajectory planning. While existing vision-based end-to-end models have achieved promising results, these methods are still facing the challenges of vision understanding, decision reasoning and scene generalization. To solve these issues, a generative planning with 3D-vision language pre-training model named GPVL is proposed for end-to-end autonomous driving. The proposed paradigm has two significant aspects. On one hand, a 3D-vision language pre-training module is designed to bridge the gap between visual perception and linguistic understanding in the bird's eye view. On the other hand, a cross-modal language model is introduced to generate holistic driving decisions and fine-grained trajectories with perception and navigation information in an auto-regressive manner. Experiments on the challenging nuScenes dataset demonstrate that the proposed scheme achieves excellent performances compared with state-of-the-art methods. Besides, the proposed GPVL presents strong generalization ability and real-time potential when handling high-level commands in various scenarios. It is believed that the effective, robust and efficient performance of GPVL is crucial for the practical application of future autonomous driving systems. Code is available at https://github.com/ltp1995/GPVL
Related papers
- A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.
This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - Application of Vision-Language Model to Pedestrians Behavior and Scene Understanding in Autonomous Driving [2.0122032639916485]
We analyze effective knowledge distillation of semantic labels to smaller Vision networks.
This can be used for the semantic representation of complex scenes for downstream decision-making for planning and control.
arXiv Detail & Related papers (2025-01-12T01:31:07Z) - VLM-AD: End-to-End Autonomous Driving through Vision-Language Model Supervision [20.43366384946928]
Vision-language models (VLMs) as teachers to enhance training.
VLM-AD achieves significant improvements in planning accuracy and reduced collision rates on the nuScenes dataset.
arXiv Detail & Related papers (2024-12-19T01:53:36Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.
Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.
Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - CoVLA: Comprehensive Vision-Language-Action Dataset for Autonomous Driving [1.727597257312416]
CoVLA (Comprehensive Vision-Language-Action) dataset comprises real-world driving videos spanning more than 80 hours.
This dataset establishes a framework for robust, interpretable, and data-driven autonomous driving systems.
arXiv Detail & Related papers (2024-08-19T09:53:49Z) - VLP: Vision Language Planning for Autonomous Driving [52.640371249017335]
This paper presents a novel Vision-Language-Planning framework that exploits language models to bridge the gap between linguistic understanding and autonomous driving.
It achieves state-of-the-art end-to-end planning performance on the NuScenes dataset by achieving 35.9% and 60.5% reduction in terms of average L2 error and collision rates, respectively.
arXiv Detail & Related papers (2024-01-10T23:00:40Z) - Policy Pre-training for End-to-end Autonomous Driving via
Self-supervised Geometric Modeling [96.31941517446859]
We propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving.
We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos.
In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input.
In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only.
arXiv Detail & Related papers (2023-01-03T08:52:49Z) - ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal
Feature Learning [132.20119288212376]
We propose a spatial-temporal feature learning scheme towards a set of more representative features for perception, prediction and planning tasks simultaneously.
To the best of our knowledge, we are the first to systematically investigate each part of an interpretable end-to-end vision-based autonomous driving system.
arXiv Detail & Related papers (2022-07-15T16:57:43Z) - Connecting Language and Vision for Natural Language-Based Vehicle
Retrieval [77.88818029640977]
In this paper, we apply one new modality, i.e., the language description, to search the vehicle of interest.
To connect language and vision, we propose to jointly train the state-of-the-art vision models with the transformer-based language model.
Our proposed method has achieved the 1st place on the 5th AI City Challenge, yielding competitive performance 18.69% MRR accuracy.
arXiv Detail & Related papers (2021-05-31T11:42:03Z) - Learning Interpretable End-to-End Vision-Based Motion Planning for
Autonomous Driving with Optical Flow Distillation [11.638798976654327]
IVMP is an interpretable end-to-end vision-based motion planning approach for autonomous driving.
We develop an optical flow distillation paradigm, which can effectively enhance the network while still maintaining its real-time performance.
Our IVMP significantly outperforms the state-of-the-art approaches in imitating human drivers with a much higher success rate.
arXiv Detail & Related papers (2021-04-18T13:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.