Towards Precision Spectroscopy of Antiprotonic Atoms for Probing Strong-field QED
- URL: http://arxiv.org/abs/2501.08893v1
- Date: Wed, 15 Jan 2025 16:03:23 GMT
- Title: Towards Precision Spectroscopy of Antiprotonic Atoms for Probing Strong-field QED
- Authors: Gonçalo Baptista, Shikha Rathi, Michael Roosa, Quentin Senetaire, Jonas Sommerfeldt, Toshiyuki Azuma, Daniel Becker, Francois Butin, Ofir Eizenberg, Joseph Fowler, Hiroyuki Fujioka, Davide Gamba, Nabil Garroum, Mauro Guerra, Tadashi Hashimoto, Takashi Higuchi, Paul Indelicato, Jorge Machado, Kelsey Morgan, Francois Nez, Jason Nobles, Ben Ohayon, Shinji Okada, Daniel Schmidt, Daniel Swetz, Joel Ullom, Pauline Yzombard, Marco Zito, Nancy Paul,
- Abstract summary: PAX aims to test strong-field quantum electrodynamics (QED) effects by performing high-precision x-ray spectroscopy of antiprotonic atoms.
gaseous targets will be used for the creation of antiprotonic atoms.
Measurement of transitions between circular Rydberg states will be conducted with up to two orders of magnitude improved accuracy.
- Score: 0.17710842004470104
- License:
- Abstract: PAX (antiProtonic Atom X-ray spectroscopy) is a new experiment with the aim to test strong-field quantum electrodynamics (QED) effects by performing high-precision x-ray spectroscopy of antiprotonic atoms. By utilizing advanced microcalorimeter detection techniques and a low-energy antiproton beam provided by the ELENA ring at CERN, gaseous targets will be used for the creation of antiprotonic atoms, and the measurement of transitions between circular Rydberg states will be conducted with up to two orders of magnitude improved accuracy over previous studies using high-purity germanium detectors. Our approach eliminates the longstanding issue of nuclear uncertainties that have hindered prior studies using highly charged ions, thus enabling direct and purely QED-focused measurements. By precisely probing atomic systems with electric fields up to two orders of magnitude above the Schwinger limit, PAX will test vacuum polarization and second-order QED corrections, opening new frontiers in fundamental physics and uncovering potential pathways to physics beyond the Standard Model.
Related papers
- A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)
The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.
We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Determining Absolute Neutrino Mass using Quantum Technologies [0.0]
Next generation tritium decay experiments to determine the absolute neutrino mass require high-precision measurements of $beta$-decay electron energies.
Quantum-limited microwave amplifiers will allow precise cyclotron frequency measurements.
arXiv Detail & Related papers (2024-12-09T09:41:30Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Precision Spectroscopy of Fast, Hot Exotic Isotopes Using Machine
Learning Assisted Event-by-Event Doppler Correction [0.6999740786886537]
We propose an experimental scheme for performing sensitive, high-precision laser spectroscopy studies on fast exotic isotopes.
The ability to perform in-flight spectroscopy, directly on highly energetic beams, offers unique opportunities to study short-lived isotopes with lifetimes in the millisecond range.
arXiv Detail & Related papers (2023-04-25T19:53:59Z) - Improving the spectroscopic knowledge of neutral Neodymium [0.0]
Laser cooling and trapping of lanthanides has opened the possibility to carry out new experiments with ultracold dipolar gases.
We present here a detailed modeling of the energy levels of neutral neodymium (Nd), an element belonging to the left part of the lanthanide row.
arXiv Detail & Related papers (2022-09-30T14:08:33Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Ultra-High Q Nanomechanical Resonators for Force Sensing [91.3755431537592]
I propose that such resonators will allow the detection of electron and nuclear spins with high spatial resolution.
The article lists the challenges that must be overcome before this vision can become reality, and indicates potential solutions.
arXiv Detail & Related papers (2022-09-12T12:21:00Z) - Tests of physics beyond the Standard Model with single-electron ions [0.0]
A highly effective approach to the search for hypothetical new interactions through isotope shift spectroscopy of hydrogen-like ions is presented.
A weighted difference of the g factor and ground-state energy is shown to assist in the suppression of detrimental uncertainties from nuclear structure.
arXiv Detail & Related papers (2022-02-03T16:29:45Z) - Measurements of blackbody radiation-induced transition rates between
high-lying S, P and D Rydberg levels [47.187609203210705]
We report experimental measurements of the rates of blackbody radiation-induced transitions between high-lying (n>60) S, P and D Rydberg levels of rubidium atoms in a magneto-optical trap.
Our results reveal significant deviations of the measured transition rates from theory for well-defined ranges of the principal quantum number.
We conclude that it should be possible to use such external cavities to control and suppress the blackbody radiation-induced transitions.
arXiv Detail & Related papers (2021-11-30T12:22:32Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Spin Squeezing of a Bose-Einstein Condensate via Quantum Non-Demolition
Measurement for Quantum-Enhanced Atom Interferometry [0.0]
We investigate the use of quantum non-demolition measurement to enhance the sensitivity of atom interferometry with Bose-condensed atoms.
In particular, we are concerned with enhancing existing high-precision atom interferometry apparatuses.
arXiv Detail & Related papers (2020-05-01T10:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.