SimGen: A Diffusion-Based Framework for Simultaneous Surgical Image and Segmentation Mask Generation
- URL: http://arxiv.org/abs/2501.09008v1
- Date: Wed, 15 Jan 2025 18:48:38 GMT
- Title: SimGen: A Diffusion-Based Framework for Simultaneous Surgical Image and Segmentation Mask Generation
- Authors: Aditya Bhat, Rupak Bose, Chinedu Innocent Nwoye, Nicolas Padoy,
- Abstract summary: generative AI models like text-to-image can alleviate data scarcity, incorporating spatial annotations, such as segmentation masks, is crucial for precision-driven surgical applications, simulation, and education.
This study introduces both a novel task and method, SimGen, for Simultaneous Image and Mask Generation.
SimGen is a diffusion model based on the DDPM framework and Residual U-Net, designed to jointly generate high-fidelity surgical images and their corresponding segmentation masks.
- Score: 1.9393128408121891
- License:
- Abstract: Acquiring and annotating surgical data is often resource-intensive, ethical constraining, and requiring significant expert involvement. While generative AI models like text-to-image can alleviate data scarcity, incorporating spatial annotations, such as segmentation masks, is crucial for precision-driven surgical applications, simulation, and education. This study introduces both a novel task and method, SimGen, for Simultaneous Image and Mask Generation. SimGen is a diffusion model based on the DDPM framework and Residual U-Net, designed to jointly generate high-fidelity surgical images and their corresponding segmentation masks. The model leverages cross-correlation priors to capture dependencies between continuous image and discrete mask distributions. Additionally, a Canonical Fibonacci Lattice (CFL) is employed to enhance class separability and uniformity in the RGB space of the masks. SimGen delivers high-fidelity images and accurate segmentation masks, outperforming baselines across six public datasets assessed on image and semantic inception distance metrics. Ablation study shows that the CFL improves mask quality and spatial separation. Downstream experiments suggest generated image-mask pairs are usable if regulations limit human data release for research. This work offers a cost-effective solution for generating paired surgical images and complex labels, advancing surgical AI development by reducing the need for expensive manual annotations.
Related papers
- Mask Factory: Towards High-quality Synthetic Data Generation for Dichotomous Image Segmentation [70.95380821618711]
Dichotomous Image (DIS) tasks require highly precise annotations.
Current generative models and techniques struggle with the issues of scene deviations, noise-induced errors, and limited training sample variability.
We introduce a novel approach, which provides a scalable solution for generating diverse and precise datasets.
arXiv Detail & Related papers (2024-12-26T06:37:25Z) - Image Synthesis with Class-Aware Semantic Diffusion Models for Surgical Scene Segmentation [3.6723640056915436]
We propose the Class-Aware Semantic Diffusion Model (CASDM) to tackle data scarcity and imbalance.
Class-aware mean squared error and class-aware self-perceptual loss functions have been defined to prioritize critical, less visible classes.
We are the first to generate multi-class segmentation maps using text prompts in a novel fashion to specify their contents.
arXiv Detail & Related papers (2024-10-31T14:14:30Z) - Comprehensive Generative Replay for Task-Incremental Segmentation with Concurrent Appearance and Semantic Forgetting [49.87694319431288]
Generalist segmentation models are increasingly favored for diverse tasks involving various objects from different image sources.
We propose a Comprehensive Generative (CGR) framework that restores appearance and semantic knowledge by synthesizing image-mask pairs.
Experiments on incremental tasks (cardiac, fundus and prostate segmentation) show its clear advantage for alleviating concurrent appearance and semantic forgetting.
arXiv Detail & Related papers (2024-06-28T10:05:58Z) - 3D MRI Synthesis with Slice-Based Latent Diffusion Models: Improving Tumor Segmentation Tasks in Data-Scarce Regimes [2.8498944632323755]
We propose a novel slice-based latent diffusion architecture to address the complexities of volumetric data generation.
This approach extends the joint distribution modeling of medical images and their associated masks, allowing a simultaneous generation of both under data-scarce regimes.
Our architecture can be conditioned by tumor characteristics, including size, shape, and relative position, thereby providing a diverse range of tumor variations.
arXiv Detail & Related papers (2024-06-08T09:53:45Z) - End-to-end autoencoding architecture for the simultaneous generation of
medical images and corresponding segmentation masks [3.1133049660590615]
We present an end-to-end architecture based on the Hamiltonian Variational Autoencoder (HVAE)
This approach yields an improved posterior distribution approximation compared to traditional Variational Autoencoders (VAE)
Our method outperforms generative adversarial conditions, showcasing enhancements in image quality synthesis.
arXiv Detail & Related papers (2023-11-17T11:56:53Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Not All Image Regions Matter: Masked Vector Quantization for
Autoregressive Image Generation [78.13793505707952]
Existing autoregressive models follow the two-stage generation paradigm that first learns a codebook in the latent space for image reconstruction and then completes the image generation autoregressively based on the learned codebook.
We propose a novel two-stage framework, which consists of Masked Quantization VAE (MQ-VAE) Stack model from modeling redundancy.
arXiv Detail & Related papers (2023-05-23T02:15:53Z) - Less is More: Unsupervised Mask-guided Annotated CT Image Synthesis with
Minimum Manual Segmentations [2.1785903900600316]
We propose a novel strategy for medical image synthesis, namely Unsupervised Mask (UM)-guided synthesis.
UM-guided synthesis provided high-quality synthetic images with significantly higher fidelity, variety, and utility.
arXiv Detail & Related papers (2023-03-19T20:30:35Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
Masked image modeling is a promising self-supervised learning method for visual data.
We present AutoMAE, a framework that uses Gumbel-Softmax to interlink an adversarially-trained mask generator and a mask-guided image modeling process.
In our experiments, AutoMAE is shown to provide effective pretraining models on standard self-supervised benchmarks and downstream tasks.
arXiv Detail & Related papers (2023-03-12T05:28:55Z) - Stare at What You See: Masked Image Modeling without Reconstruction [154.74533119863864]
Masked Autoencoders (MAE) have been prevailing paradigms for large-scale vision representation pre-training.
Recent approaches apply semantic-rich teacher models to extract image features as the reconstruction target, leading to better performance.
We argue the features extracted by powerful teacher models already encode rich semantic correlation across regions in an intact image.
arXiv Detail & Related papers (2022-11-16T12:48:52Z) - Calibrated Hyperspectral Image Reconstruction via Graph-based
Self-Tuning Network [40.71031760929464]
Hyperspectral imaging (HSI) has attracted increasing research attention, especially for the ones based on a coded snapshot spectral imaging (CASSI) system.
Existing deep HSI reconstruction models are generally trained on paired data to retrieve original signals upon 2D compressed measurements given by a particular optical hardware mask in CASSI.
This mask-specific training style will lead to a hardware miscalibration issue, which sets up barriers to deploying deep HSI models among different hardware and noisy environments.
We propose a novel Graph-based Self-Tuning ( GST) network to reason uncertainties adapting to varying spatial structures of masks among
arXiv Detail & Related papers (2021-12-31T09:39:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.