TCMM: Token Constraint and Multi-Scale Memory Bank of Contrastive Learning for Unsupervised Person Re-identification
- URL: http://arxiv.org/abs/2501.09044v1
- Date: Wed, 15 Jan 2025 07:14:02 GMT
- Title: TCMM: Token Constraint and Multi-Scale Memory Bank of Contrastive Learning for Unsupervised Person Re-identification
- Authors: Zheng-An Zhu, Hsin-Che Chien, Chen-Kuo Chiang,
- Abstract summary: This paper introduces the ViT Token Constraint to mitigate the damage caused by patch noises to the ViT architecture.
The proposed Multi-scale Memory enhances the exploration of outlier samples and maintains feature consistency.
- Score: 2.3183978396999967
- License:
- Abstract: This paper proposes the ViT Token Constraint and Multi-scale Memory bank (TCMM) method to address the patch noises and feature inconsistency in unsupervised person re-identification works. Many excellent methods use ViT features to obtain pseudo labels and clustering prototypes, then train the model with contrastive learning. However, ViT processes images by performing patch embedding, which inevitably introduces noise in patches and may compromise the performance of the re-identification model. On the other hand, previous memory bank based contrastive methods may lead data inconsistency due to the limitation of batch size. Furthermore, existing pseudo label methods often discard outlier samples that are difficult to cluster. It sacrifices the potential value of outlier samples, leading to limited model diversity and robustness. This paper introduces the ViT Token Constraint to mitigate the damage caused by patch noises to the ViT architecture. The proposed Multi-scale Memory enhances the exploration of outlier samples and maintains feature consistency. Experimental results demonstrate that our system achieves state-of-the-art performance on common benchmarks. The project is available at \href{https://github.com/andy412510/TCMM}{https://github.com/andy412510/TCMM}.
Related papers
- Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
We propose a novel method named Regularized Contrastive Partial Multi-view Outlier Detection (RCPMOD)
In this framework, we utilize contrastive learning to learn view-consistent information and distinguish outliers by the degree of consistency.
Experimental results on four benchmark datasets demonstrate that our proposed approach could outperform state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-02T14:34:27Z) - STAMP: Outlier-Aware Test-Time Adaptation with Stable Memory Replay [76.06127233986663]
Test-time adaptation (TTA) aims to address the distribution shift between the training and test data with only unlabeled data at test time.
This paper pays attention to the problem that conducts both sample recognition and outlier rejection during inference while outliers exist.
We propose a new approach called STAble Memory rePlay (STAMP), which performs optimization over a stable memory bank instead of the risky mini-batch.
arXiv Detail & Related papers (2024-07-22T16:25:41Z) - EMS-SD: Efficient Multi-sample Speculative Decoding for Accelerating Large Language Models [40.651650382105636]
Vanilla method adds padding tokens in order to ensure that the number of new tokens remains consistent across samples.
We propose a novel method that can resolve the issue of inconsistent tokens accepted by different samples without necessitating an increase in memory or computing overhead.
Our proposed method can handle the situation where the prediction tokens of different samples are inconsistent without the need to add padding tokens.
arXiv Detail & Related papers (2024-05-13T08:24:21Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - Match me if you can: Semi-Supervised Semantic Correspondence Learning with Unpaired Images [76.47980643420375]
This paper builds on the hypothesis that there is an inherent data-hungry matter in learning semantic correspondences.
We demonstrate a simple machine annotator reliably enriches paired key points via machine supervision.
Our models surpass current state-of-the-art models on semantic correspondence learning benchmarks like SPair-71k, PF-PASCAL, and PF-WILLOW.
arXiv Detail & Related papers (2023-11-30T13:22:15Z) - Which Tokens to Use? Investigating Token Reduction in Vision
Transformers [64.99704164972513]
We study the reduction patterns of 10 different token reduction methods using four image classification datasets.
We find that the Top-K pruning method is a surprisingly strong baseline.
The similarity of reduction patterns is a moderate-to-strong proxy for model performance.
arXiv Detail & Related papers (2023-08-09T01:51:07Z) - Twin Contrastive Learning with Noisy Labels [45.31997043789471]
We present TCL, a novel twin contrastive learning model to learn robust representations and handle noisy labels for classification.
TCL achieves 7.5% improvements on CIFAR-10 with 90% noisy label -- an extremely noisy scenario.
arXiv Detail & Related papers (2023-03-13T08:53:47Z) - Label Noise-Robust Learning using a Confidence-Based Sieving Strategy [15.997774467236352]
In learning tasks with label noise, improving model robustness against overfitting is a pivotal challenge.
Identifying the samples with noisy labels and preventing the model from learning them is a promising approach to address this challenge.
We propose a novel discriminator metric called confidence error and a sieving strategy called CONFES to differentiate between the clean and noisy samples effectively.
arXiv Detail & Related papers (2022-10-11T10:47:28Z) - Unsupervised Noisy Tracklet Person Re-identification [100.85530419892333]
We present a novel selective tracklet learning (STL) approach that can train discriminative person re-id models from unlabelled tracklet data.
This avoids the tedious and costly process of exhaustively labelling person image/tracklet true matching pairs across camera views.
Our method is particularly more robust against arbitrary noisy data of raw tracklets therefore scalable to learning discriminative models from unconstrained tracking data.
arXiv Detail & Related papers (2021-01-16T07:31:00Z) - Multi-Objective Interpolation Training for Robustness to Label Noise [17.264550056296915]
We show that standard supervised contrastive learning degrades in the presence of label noise.
We propose a novel label noise detection method that exploits the robust feature representations learned via contrastive learning.
Experiments on synthetic and real-world noise benchmarks demonstrate that MOIT/MOIT+ achieves state-of-the-art results.
arXiv Detail & Related papers (2020-12-08T15:01:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.