ELM-DeepONets: Backpropagation-Free Training of Deep Operator Networks via Extreme Learning Machines
- URL: http://arxiv.org/abs/2501.09395v1
- Date: Thu, 16 Jan 2025 09:06:43 GMT
- Title: ELM-DeepONets: Backpropagation-Free Training of Deep Operator Networks via Extreme Learning Machines
- Authors: Hwijae Son,
- Abstract summary: Deep Operator Networks (DeepONets) are among the most prominent frameworks for operator learning.<n>We propose ELM-DeepONets, an Extreme Learning Machine (ELM) framework for DeepONets that leverages the backpropagation-free nature of ELM.
- Score: 0.4895118383237099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Operator Networks (DeepONets) are among the most prominent frameworks for operator learning, grounded in the universal approximation theorem for operators. However, training DeepONets typically requires significant computational resources. To address this limitation, we propose ELM-DeepONets, an Extreme Learning Machine (ELM) framework for DeepONets that leverages the backpropagation-free nature of ELM. By reformulating DeepONet training as a least-squares problem for newly introduced parameters, the ELM-DeepONet approach significantly reduces training complexity. Validation on benchmark problems, including nonlinear ODEs and PDEs, demonstrates that the proposed method not only achieves superior accuracy but also drastically reduces computational costs. This work offers a scalable and efficient alternative for operator learning in scientific computing.
Related papers
- DeepONet Augmented by Randomized Neural Networks for Efficient Operator Learning in PDEs [5.84093922354671]
We propose RaNN-DeepONets, a hybrid architecture designed to balance accuracy and efficiency.
RaNN-DeepONets achieves comparable accuracy while reducing computational costs by orders of magnitude.
These results highlight the potential of RaNN-DeepONets as an efficient alternative for operator learning in PDE-based systems.
arXiv Detail & Related papers (2025-03-01T03:05:29Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - DeepOSets: Non-Autoregressive In-Context Learning of Supervised Learning Operators [11.913853433712855]
In-context operator learning allows a trained machine learning model to learn from a user prompt without further training.
DeepOSets adds in-context learning capabilities to Deep Operator Networks (DeepONets) by combining it with the DeepSets architecture.
As the first non-autoregressive model for in-context operator learning, DeepOSets allow the user prompt to be processed in parallel.
arXiv Detail & Related papers (2024-10-11T23:07:19Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - RandONet: Shallow-Networks with Random Projections for learning linear and nonlinear operators [0.0]
We present Random Projection-based Operator Networks (RandONets)
RandONets are shallow networks with random projections that learn linear and nonlinear operators.
We show, that for this particular task, RandONets outperform, both in terms of numerical approximation accuracy and computational cost, the vanilla" DeepOnets.
arXiv Detail & Related papers (2024-06-08T13:20:48Z) - Nonlinear model reduction for operator learning [1.0364028373854508]
We propose an efficient framework that combines neural networks with kernel principal component analysis (KPCA) for operator learning.
Our results demonstrate the superior performance of KPCA-DeepONet over POD-DeepONet.
arXiv Detail & Related papers (2024-03-27T16:24:26Z) - Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning [45.78096783448304]
In this work, seeking data efficiency, we design unsupervised pretraining for PDE operator learning.
We mine unlabeled PDE data without simulated solutions, and we pretrain neural operators with physics-inspired reconstruction-based proxy tasks.
Our method is highly data-efficient, more generalizable, and even outperforms conventional vision-pretrained models.
arXiv Detail & Related papers (2024-02-24T06:27:33Z) - HyperDeepONet: learning operator with complex target function space
using the limited resources via hypernetwork [14.93012615797081]
This study proposes HyperDeepONet, which uses the expressive power of the hypernetwork to enable the learning of a complex operator with a smaller set of parameters.
We analyze the complexity of DeepONet and conclude that HyperDeepONet needs relatively lower complexity to obtain the desired accuracy for operator learning.
arXiv Detail & Related papers (2023-12-26T08:28:46Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Deep Learning Meets Adaptive Filtering: A Stein's Unbiased Risk
Estimator Approach [13.887632153924512]
We introduce task-based deep learning frameworks, denoted as Deep RLS and Deep EASI.
These architectures transform the iterations of the original algorithms into layers of a deep neural network, enabling efficient source signal estimation.
To further enhance performance, we propose training these deep unrolled networks utilizing a surrogate loss function grounded on Stein's unbiased risk estimator (SURE)
arXiv Detail & Related papers (2023-07-31T14:26:41Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Self-Organized Operational Neural Networks with Generative Neurons [87.32169414230822]
ONNs are heterogenous networks with a generalized neuron model that can encapsulate any set of non-linear operators.
We propose Self-organized ONNs (Self-ONNs) with generative neurons that have the ability to adapt (optimize) the nodal operator of each connection.
arXiv Detail & Related papers (2020-04-24T14:37:56Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.