Robin: a Suite of Multi-Scale Vision-Language Models and the CHIRP Evaluation Benchmark
- URL: http://arxiv.org/abs/2501.09672v2
- Date: Tue, 21 Jan 2025 01:04:52 GMT
- Title: Robin: a Suite of Multi-Scale Vision-Language Models and the CHIRP Evaluation Benchmark
- Authors: Alexis Roger, Prateek Humane, Daniel Z. Kaplan, Kshitij Gupta, Qi Sun, George Adamopoulos, Jonathan Siu Chi Lim, Quentin Anthony, Edwin Fennell, Irina Rish,
- Abstract summary: The proliferation of Vision-Language Models (VLMs) in the past several years calls for rigorous and comprehensive evaluation methods and benchmarks.<n>This work analyzes existing VLM evaluation techniques, including automated metrics, AI-based assessments, and human evaluations across diverse tasks.
- Score: 22.128954880120222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of Vision-Language Models (VLMs) in the past several years calls for rigorous and comprehensive evaluation methods and benchmarks. This work analyzes existing VLM evaluation techniques, including automated metrics, AI-based assessments, and human evaluations across diverse tasks. We first introduce Robin - a novel suite of VLMs that we built by combining Large Language Models (LLMs) and Vision Encoders (VEs) at multiple scales, and use Robin to identify shortcomings of current evaluation approaches across scales. Next, to overcome the identified limitations, we introduce CHIRP - a new long form response benchmark we developed for more robust and complete VLM evaluation. We provide open access to the Robin training code, model suite, and CHIRP benchmark to promote reproducibility and advance VLM research.
Related papers
- UVE: Are MLLMs Unified Evaluators for AI-Generated Videos? [20.199060287444162]
This work investigates the feasibility of using multimodal large language models (MLLMs) as a unified evaluator for AI-generated videos (AIGVs)
UVE-Bench collects videos generated by state-of-the-art VGMs and provides pairwise human preference annotations across 15 evaluation aspects.
Our results suggest that while advanced MLLMs still lag behind human evaluators, they demonstrate promising ability in unified AIGV evaluation.
arXiv Detail & Related papers (2025-03-13T01:52:27Z) - OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain [62.89809156574998]
We introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain.
Our benchmark is characterized by its multi-dimensional evaluation framework.
Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets.
arXiv Detail & Related papers (2024-12-17T15:38:42Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.<n>In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.<n>This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - Benchmarking Vision, Language, & Action Models on Robotic Learning Tasks [20.93006455952299]
Vision-language-action (VLA) models represent a promising direction for developing general-purpose robotic systems.<n>We present a comprehensive evaluation framework and benchmark suite for assessing VLA models.
arXiv Detail & Related papers (2024-11-04T18:01:34Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
We introduce MMIE, a large-scale benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs)
MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts.
It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies.
arXiv Detail & Related papers (2024-10-14T04:15:00Z) - VHELM: A Holistic Evaluation of Vision Language Models [75.88987277686914]
We present the Holistic Evaluation of Vision Language Models (VHELM)
VHELM aggregates various datasets to cover one or more of the 9 aspects: visual perception, knowledge, reasoning, bias, fairness, multilinguality, robustness, toxicity, and safety.
Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast.
arXiv Detail & Related papers (2024-10-09T17:46:34Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - Prometheus-Vision: Vision-Language Model as a Judge for Fine-Grained
Evaluation [31.062433484245684]
We train Prometheus-Vision, the first open-source VLM evaluator model that can understand the user-defined score criteria during evaluation.
Prometheus-Vision shows the highest Pearson correlation with human evaluators and GPT-4V among open-source models.
arXiv Detail & Related papers (2024-01-12T14:19:23Z) - MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria [49.500322937449326]
Multimodal large language models (MLLMs) have broadened the scope of AI applications.
Existing automatic evaluation methodologies for MLLMs are mainly limited in evaluating queries without considering user experiences.
We propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with per-sample criteria using potent MLLM as the judge.
arXiv Detail & Related papers (2023-11-23T12:04:25Z) - MMBench: Is Your Multi-modal Model an All-around Player? [114.45702807380415]
We propose MMBench, a benchmark for assessing the multi-modal capabilities of vision-language models.
MMBench is meticulously curated with well-designed quality control schemes.
MMBench incorporates multiple-choice questions in both English and Chinese versions.
arXiv Detail & Related papers (2023-07-12T16:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.