Multi-Head Self-Attending Neural Tucker Factorization
- URL: http://arxiv.org/abs/2501.09776v1
- Date: Thu, 16 Jan 2025 13:04:15 GMT
- Title: Multi-Head Self-Attending Neural Tucker Factorization
- Authors: Yikai Hou, Peng Tang,
- Abstract summary: We introduce a neural network-based tensor factorization approach tailored for learning representations of high-dimensional and incomplete (HDI) tensors.
The proposed MSNTucF model demonstrates superior performance compared to state-of-the-art benchmark models in estimating missing observations.
- Score: 5.734615417239977
- License:
- Abstract: Quality-of-service (QoS) data exhibit dynamic temporal patterns that are crucial for accurately predicting missing values. These patterns arise from the evolving interactions between users and services, making it essential to capture the temporal dynamics inherent in such data for improved prediction performance. As the size and complexity of QoS datasets increase, existing models struggle to provide accurate predictions, highlighting the need for more flexible and dynamic methods to better capture the underlying patterns in large-scale QoS data. To address this issue, we introduce a neural network-based tensor factorization approach tailored for learning spatiotemporal representations of high-dimensional and incomplete (HDI) tensors, namely the Multi-head Self-attending Neural Tucker Factorization (MSNTucF). The model is elaborately designed for modeling intricate nonlinear spatiotemporal feature interaction patterns hidden in real world data with a two-fold idea. It first employs a neural network structure to generalize the traditional framework of Tucker factorization and then proposes to leverage a multi-head self-attending module to enforce nonlinear latent interaction learning. In empirical studies on two dynamic QoS datasets from real applications, the proposed MSNTucF model demonstrates superior performance compared to state-of-the-art benchmark models in estimating missing observations. This highlights its ability to learn non-linear spatiotemporal representations of HDI tensors.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling [4.190836962132713]
This paper introduces Orchid, a novel architecture designed to address the quadratic complexity of traditional attention mechanisms.
At the core of this architecture lies a new data-dependent global convolution layer, which contextually adapts its conditioned kernel on input sequence.
We evaluate the proposed model across multiple domains, including language modeling and image classification, to highlight its performance and generality.
arXiv Detail & Related papers (2024-02-28T17:36:45Z) - Neural Koopman prior for data assimilation [7.875955593012905]
We use a neural network architecture to embed dynamical systems in latent spaces.
We introduce methods that enable to train such a model for long-term continuous reconstruction.
The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques.
arXiv Detail & Related papers (2023-09-11T09:04:36Z) - A Momentum-Incorporated Non-Negative Latent Factorization of Tensors
Model for Dynamic Network Representation [0.0]
A large-scale dynamic network (LDN) is a source of data in many big data-related applications.
A Latent factorization of tensors (LFT) model efficiently extracts this time pattern.
LFT models based on gradient descent (SGD) solvers are often limited by training schemes and have poor tail convergence.
This paper proposes a novel nonlinear LFT model (MNNL) based on momentum-ind SGD to make training unconstrained and compatible with general training schemes.
arXiv Detail & Related papers (2023-05-04T12:30:53Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Stochastic Recurrent Neural Network for Multistep Time Series
Forecasting [0.0]
We leverage advances in deep generative models and the concept of state space models to propose an adaptation of the recurrent neural network for time series forecasting.
Our model preserves the architectural workings of a recurrent neural network for which all relevant information is encapsulated in its hidden states, and this flexibility allows our model to be easily integrated into any deep architecture for sequential modelling.
arXiv Detail & Related papers (2021-04-26T01:43:43Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.