Bridging Language Barriers in Healthcare: A Study on Arabic LLMs
- URL: http://arxiv.org/abs/2501.09825v1
- Date: Thu, 16 Jan 2025 20:24:56 GMT
- Title: Bridging Language Barriers in Healthcare: A Study on Arabic LLMs
- Authors: Nada Saadi, Tathagata Raha, Clément Christophe, Marco AF Pimentel, Ronnie Rajan, Praveen K Kanithi,
- Abstract summary: This paper investigates the challenges of developing large language models proficient in both multilingual understanding and medical knowledge.
We find that larger models with carefully calibrated language ratios achieve superior performance on native-language clinical tasks.
- Score: 1.2006896500048552
- License:
- Abstract: This paper investigates the challenges of developing large language models (LLMs) proficient in both multilingual understanding and medical knowledge. We demonstrate that simply translating medical data does not guarantee strong performance on clinical tasks in the target language. Our experiments reveal that the optimal language mix in training data varies significantly across different medical tasks. We find that larger models with carefully calibrated language ratios achieve superior performance on native-language clinical tasks. Furthermore, our results suggest that relying solely on fine-tuning may not be the most effective approach for incorporating new language knowledge into LLMs. Instead, data and computationally intensive pretraining methods may still be necessary to achieve optimal performance in multilingual medical settings. These findings provide valuable guidance for building effective and inclusive medical AI systems for diverse linguistic communities.
Related papers
- Generalization of Medical Large Language Models through Cross-Domain Weak Supervision [0.0]
We propose the Incremental Curriculum-Based Fine-Tuning (ICFT) framework to enhance the generative capabilities of medical large language models (MLLMs)
ICFT combines curriculum-based learning, dual-stage memory coordination, and parameter-efficient fine-tuning to enable a progressive transition from general linguistic knowledge to strong domain-specific expertise.
arXiv Detail & Related papers (2025-02-02T16:05:23Z) - A Comprehensive Evaluation of Large Language Models on Mental Illnesses in Arabic Context [0.9074663948713616]
Mental health disorders pose a growing public health concern in the Arab world.
This study comprehensively evaluates 8 large language models (LLMs) on diverse mental health datasets.
arXiv Detail & Related papers (2025-01-12T16:17:25Z) - Centurio: On Drivers of Multilingual Ability of Large Vision-Language Model [66.17354128553244]
Most Large Vision-Language Models (LVLMs) to date are trained predominantly on English data.
We investigate how different training mixes tip the scale for different groups of languages.
We train Centurio, a 100-language LVLM, offering state-of-the-art performance in an evaluation covering 14 tasks and 56 languages.
arXiv Detail & Related papers (2025-01-09T10:26:14Z) - Multi-OphthaLingua: A Multilingual Benchmark for Assessing and Debiasing LLM Ophthalmological QA in LMICs [3.1894617416005855]
Large language models (LLMs) present a promising solution to automate various ophthalmology procedures.
LLMs have demonstrated significantly varied performance across different languages in natural language question-answering tasks.
This study introduces the first multilingual ophthalmological question-answering benchmark with manually curated questions parallel across languages.
arXiv Detail & Related papers (2024-12-18T20:18:03Z) - XTransplant: A Probe into the Upper Bound Performance of Multilingual Capability and Culture Adaptability in LLMs via Mutual Cross-lingual Feed-forward Transplantation [49.69780199602105]
Current large language models (LLMs) often exhibit imbalances in multilingual capabilities and cultural adaptability.
We propose a probing method named XTransplant that explores cross-lingual latent interactions via cross-lingual feed-forward transplantation.
We empirically prove that both the multilingual capabilities and cultural adaptability of LLMs hold the potential to be significantly improved by XTransplant.
arXiv Detail & Related papers (2024-12-17T09:05:30Z) - Extracting and Transferring Abilities For Building Multi-lingual Ability-enhanced Large Language Models [104.96990850774566]
We propose a Multi-lingual Ability Extraction and Transfer approach, named as MAET.
Our key idea is to decompose and extract language-agnostic ability-related weights from large language models.
Experiment results show MAET can effectively and efficiently extract and transfer the advanced abilities, and outperform training-based baseline methods.
arXiv Detail & Related papers (2024-10-10T11:23:18Z) - Severity Prediction in Mental Health: LLM-based Creation, Analysis,
Evaluation of a Novel Multilingual Dataset [3.4146360486107987]
Large Language Models (LLMs) are increasingly integrated into various medical fields, including mental health support systems.
We present a novel multilingual adaptation of widely-used mental health datasets, translated from English into six languages.
This dataset enables a comprehensive evaluation of LLM performance in detecting mental health conditions and assessing their severity across multiple languages.
arXiv Detail & Related papers (2024-09-25T22:14:34Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
Supervised fine-tuning (SFT), supervised instruction tuning (SIT) and in-context learning (ICL) are three alternative, de facto standard approaches to few-shot learning.
We present an extensive and systematic comparison of the three approaches, testing them on 6 high- and low-resource languages, three different NLU tasks, and a myriad of language and domain setups.
Our observations show that supervised instruction tuning has the best trade-off between performance and resource requirements.
arXiv Detail & Related papers (2024-03-04T10:48:13Z) - Are Large Language Models Ready for Healthcare? A Comparative Study on
Clinical Language Understanding [12.128991867050487]
Large language models (LLMs) have made significant progress in various domains, including healthcare.
In this study, we evaluate state-of-the-art LLMs within the realm of clinical language understanding tasks.
arXiv Detail & Related papers (2023-04-09T16:31:47Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
We construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches.
We propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-12-04T06:09:02Z) - Gradient Vaccine: Investigating and Improving Multi-task Optimization in
Massively Multilingual Models [63.92643612630657]
This paper attempts to peek into the black-box of multilingual optimization through the lens of loss function geometry.
We find that gradient similarity measured along the optimization trajectory is an important signal, which correlates well with language proximity.
We derive a simple and scalable optimization procedure, named Gradient Vaccine, which encourages more geometrically aligned parameter updates for close tasks.
arXiv Detail & Related papers (2020-10-12T17:26:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.