EraseBench: Understanding The Ripple Effects of Concept Erasure Techniques
- URL: http://arxiv.org/abs/2501.09833v1
- Date: Thu, 16 Jan 2025 20:42:17 GMT
- Title: EraseBench: Understanding The Ripple Effects of Concept Erasure Techniques
- Authors: Ibtihel Amara, Ahmed Imtiaz Humayun, Ivana Kajic, Zarana Parekh, Natalie Harris, Sarah Young, Chirag Nagpal, Najoung Kim, Junfeng He, Cristina Nader Vasconcelos, Deepak Ramachandran, Goolnoosh Farnadi, Katherine Heller, Mohammad Havaei, Negar Rostamzadeh,
- Abstract summary: Concept erasure techniques can remove unwanted concepts from text-to-image models.
We systematically investigate the failure modes of current concept erasure techniques.
We introduce EraseBENCH, a benchmark designed to assess concept erasure methods with greater depth.
Our findings reveal that even state-of-the-art techniques struggle with maintaining quality post-erasure, indicating that these approaches are not yet ready for real-world deployment.
- Score: 20.2544260436998
- License:
- Abstract: Concept erasure techniques have recently gained significant attention for their potential to remove unwanted concepts from text-to-image models. While these methods often demonstrate success in controlled scenarios, their robustness in real-world applications and readiness for deployment remain uncertain. In this work, we identify a critical gap in evaluating sanitized models, particularly in terms of their performance across various concept dimensions. We systematically investigate the failure modes of current concept erasure techniques, with a focus on visually similar, binomial, and semantically related concepts. We propose that these interconnected relationships give rise to a phenomenon of concept entanglement resulting in ripple effects and degradation in image quality. To facilitate more comprehensive evaluation, we introduce EraseBENCH, a multi-dimensional benchmark designed to assess concept erasure methods with greater depth. Our dataset includes over 100 diverse concepts and more than 1,000 tailored prompts, paired with a comprehensive suite of metrics that together offer a holistic view of erasure efficacy. Our findings reveal that even state-of-the-art techniques struggle with maintaining quality post-erasure, indicating that these approaches are not yet ready for real-world deployment. This highlights the gap in reliability of the concept erasure techniques.
Related papers
- Fantastic Targets for Concept Erasure in Diffusion Models and Where To Find Them [21.386640828092524]
Concept erasure has emerged as a promising technique for mitigating the risk of harmful content generation in diffusion models.
We propose the Adaptive Guided Erasure (AGE) method, which emphdynamically selects optimal target concepts tailored to each undesirable concept.
Results show that AGE significantly outperforms state-of-the-art erasure methods on preserving unrelated concepts while maintaining effective erasure performance.
arXiv Detail & Related papers (2025-01-31T08:17:23Z) - AdvAnchor: Enhancing Diffusion Model Unlearning with Adversarial Anchors [61.007590285263376]
Security concerns have driven researchers to unlearn inappropriate concepts through fine-tuning.
Recent fine-tuning methods exhibit a considerable performance trade-off between eliminating undesirable concepts and preserving other concepts.
We propose AdvAnchor, a novel approach that generates adversarial anchors to alleviate the trade-off issue.
arXiv Detail & Related papers (2024-12-28T04:44:07Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
We introduce Reliable and Efficient Concept Erasure (RECE), a novel approach that modifies the model in 3 seconds without necessitating additional fine-tuning.
To mitigate inappropriate content potentially represented by derived embeddings, RECE aligns them with harmless concepts in cross-attention layers.
The derivation and erasure of new representation embeddings are conducted iteratively to achieve a thorough erasure of inappropriate concepts.
arXiv Detail & Related papers (2024-07-17T08:04:28Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts.
The models could be exploited for malicious purposes, such as generating images with violence or nudity, or creating unauthorized portraits of public figures in inappropriate contexts.
concept removal methods have been proposed to modify diffusion models to prevent the generation of malicious and unwanted concepts.
arXiv Detail & Related papers (2024-06-21T03:58:44Z) - ConceptPrune: Concept Editing in Diffusion Models via Skilled Neuron Pruning [10.201633236997104]
Large-scale text-to-image diffusion models have demonstrated impressive image-generation capabilities.
We present ConceptPrune, wherein we first identify critical regions within pre-trained models responsible for generating undesirable concepts.
Experiments across a range of concepts including artistic styles, nudity, object erasure, and gender debiasing demonstrate that target concepts can be efficiently erased by pruning a tiny fraction.
arXiv Detail & Related papers (2024-05-29T16:19:37Z) - Unlearning Concepts in Diffusion Model via Concept Domain Correction and Concept Preserving Gradient [20.698305103879232]
We propose a novel concept domain correction framework named textbfDoCo (textbfDomaintextbfCorrection)
By aligning the output domains of sensitive and anchor concepts through adversarial training, our approach ensures comprehensive unlearning of target concepts.
We also introduce a concept-preserving gradient surgery technique that mitigates conflicting gradient components, thereby preserving the model's utility while unlearning specific concepts.
arXiv Detail & Related papers (2024-05-24T07:47:36Z) - Infusion: Preventing Customized Text-to-Image Diffusion from Overfitting [51.606819347636076]
We analyze concept-agnostic overfitting, which undermines non-customized concept knowledge, and concept-specific overfitting, which is confined to customize on limited modalities.
We propose Infusion, a T2I customization method that enables the learning of target concepts to avoid being constrained by limited training modalities.
arXiv Detail & Related papers (2024-04-22T09:16:25Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
We propose a Separable Multi-concept Eraser (SepME) to eliminate unsafe concepts from large-scale diffusion models.
The latter separates optimizable model weights, making each weight increment correspond to a specific concept erasure.
Extensive experiments indicate the efficacy of our approach in eliminating concepts, preserving model performance, and offering flexibility in the erasure or recovery of various concepts.
arXiv Detail & Related papers (2024-02-03T11:10:57Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images.
We present the Geom-Erasing, a novel concept removal method based on the geometric-driven control.
arXiv Detail & Related papers (2023-10-09T17:13:10Z) - A Unified Concept-Based System for Local, Global, and Misclassification
Explanations [13.321794212377949]
We present a unified concept-based system for unsupervised learning of both local and global concepts.
Our primary objective is to uncover the intrinsic concepts underlying each data category by training surrogate explainer networks.
Our approach facilitates the explanation of both accurate and erroneous predictions.
arXiv Detail & Related papers (2023-06-06T09:28:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.