FoundationStereo: Zero-Shot Stereo Matching
- URL: http://arxiv.org/abs/2501.09898v2
- Date: Tue, 21 Jan 2025 18:46:52 GMT
- Title: FoundationStereo: Zero-Shot Stereo Matching
- Authors: Bowen Wen, Matthew Trepte, Joseph Aribido, Jan Kautz, Orazio Gallo, Stan Birchfield,
- Abstract summary: FoundationStereo is a foundation model for stereo depth estimation.
We first construct a large-scale (1M stereo pairs) synthetic training dataset.
We then design a number of network architecture components to enhance scalability.
- Score: 50.79202911274819
- License:
- Abstract: Tremendous progress has been made in deep stereo matching to excel on benchmark datasets through per-domain fine-tuning. However, achieving strong zero-shot generalization - a hallmark of foundation models in other computer vision tasks - remains challenging for stereo matching. We introduce FoundationStereo, a foundation model for stereo depth estimation designed to achieve strong zero-shot generalization. To this end, we first construct a large-scale (1M stereo pairs) synthetic training dataset featuring large diversity and high photorealism, followed by an automatic self-curation pipeline to remove ambiguous samples. We then design a number of network architecture components to enhance scalability, including a side-tuning feature backbone that adapts rich monocular priors from vision foundation models to mitigate the sim-to-real gap, and long-range context reasoning for effective cost volume filtering. Together, these components lead to strong robustness and accuracy across domains, establishing a new standard in zero-shot stereo depth estimation. Project page: https://nvlabs.github.io/FoundationStereo/
Related papers
- DEFOM-Stereo: Depth Foundation Model Based Stereo Matching [12.22373236061929]
DEFOM-Stereo is built to facilitate robust stereo matching with monocular depth cues.
DEFOM-Stereo is verified to have comparable performance on the Scene Flow dataset with state-of-the-art (SOTA) methods.
Our model simultaneously outperforms previous models on the individual benchmarks.
arXiv Detail & Related papers (2025-01-16T10:59:29Z) - Playing to Vision Foundation Model's Strengths in Stereo Matching [13.887661472501618]
This study serves as the first exploration of a viable approach for adapting vision foundation models (VFMs) to stereo matching.
Our ViT adapter, referred to as ViTAS, is constructed upon three types of modules: spatial differentiation, patch attention fusion, and cross-attention.
ViTAStereo outperforms the second-best network StereoBase by approximately 7.9% in terms of the percentage of error pixels, with a tolerance of 3 pixels.
arXiv Detail & Related papers (2024-04-09T12:34:28Z) - OpenStereo: A Comprehensive Benchmark for Stereo Matching and Strong Baseline [25.4712469033627]
We develop a flexible and efficient stereo matching, called OpenStereo.
OpenStereo includes training and inference codes of more than 10 network models.
We conduct an exhaustive analysis and deconstruction of recent developments in stereo matching through comprehensive ablative experiments.
Our StereoBase ranks 1st on SceneFlow, KITTI 2015, 2012 (Reflective) among published methods and achieves the best performance across all metrics.
arXiv Detail & Related papers (2023-12-01T04:35:47Z) - AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach [50.855679274530615]
We present a novel domain-adaptive approach called AdaStereo to align multi-level representations for deep stereo matching networks.
Our models achieve state-of-the-art cross-domain performance on multiple benchmarks, including KITTI, Middlebury, ETH3D and DrivingStereo.
Our method is robust to various domain adaptation settings, and can be easily integrated into quick adaptation application scenarios and real-world deployments.
arXiv Detail & Related papers (2021-12-09T15:10:47Z) - SMD-Nets: Stereo Mixture Density Networks [68.56947049719936]
We propose Stereo Mixture Density Networks (SMD-Nets), a simple yet effective learning framework compatible with a wide class of 2D and 3D architectures.
Specifically, we exploit bimodal mixture densities as output representation and show that this allows for sharp and precise disparity estimates near discontinuities.
We carry out comprehensive experiments on a new high-resolution and highly realistic synthetic stereo dataset, consisting of stereo pairs at 8Mpx resolution, as well as on real-world stereo datasets.
arXiv Detail & Related papers (2021-04-08T16:15:46Z) - PVStereo: Pyramid Voting Module for End-to-End Self-Supervised Stereo
Matching [14.603116313499648]
We propose a robust and effective self-supervised stereo matching approach, consisting of a pyramid voting module (PVM) and a novel DCNN architecture, referred to as OptStereo.
Specifically, our OptStereo first builds multi-scale cost volumes, and then adopts a recurrent unit to iteratively update disparity estimations at high resolution.
We publish the HKUST-Drive dataset, a large-scale synthetic stereo dataset, collected under different illumination and weather conditions for research purposes.
arXiv Detail & Related papers (2021-03-12T05:27:14Z) - Hierarchical Neural Architecture Search for Deep Stereo Matching [131.94481111956853]
We propose the first end-to-end hierarchical NAS framework for deep stereo matching.
Our framework incorporates task-specific human knowledge into the neural architecture search framework.
It is ranked at the top 1 accuracy on KITTI stereo 2012, 2015 and Middlebury benchmarks, as well as the top 1 on SceneFlow dataset.
arXiv Detail & Related papers (2020-10-26T11:57:37Z) - Reversing the cycle: self-supervised deep stereo through enhanced
monocular distillation [51.714092199995044]
In many fields, self-supervised learning solutions are rapidly evolving and filling the gap with supervised approaches.
We propose a novel self-supervised paradigm reversing the link between the two.
In order to train deep stereo networks, we distill knowledge through a monocular completion network.
arXiv Detail & Related papers (2020-08-17T07:40:22Z) - AdaStereo: A Simple and Efficient Approach for Adaptive Stereo Matching [50.06646151004375]
A novel domain-adaptive pipeline called AdaStereo aims to align multi-level representations for deep stereo matching networks.
Our AdaStereo models achieve state-of-the-art cross-domain performance on multiple stereo benchmarks, including KITTI, Middlebury, ETH3D, and DrivingStereo.
arXiv Detail & Related papers (2020-04-09T16:15:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.