Towards A Litmus Test for Common Sense
- URL: http://arxiv.org/abs/2501.09913v1
- Date: Fri, 17 Jan 2025 02:02:12 GMT
- Title: Towards A Litmus Test for Common Sense
- Authors: Hugo Latapie,
- Abstract summary: This paper is the second in a planned series aimed at envisioning a path to safe and beneficial artificial intelligence.
We propose a more formal litmus test for common sense, adopting an axiomatic approach that combines minimal prior knowledge constraints with diagonal or Godel-style arguments.
- Score: 5.280511830552275
- License:
- Abstract: This paper is the second in a planned series aimed at envisioning a path to safe and beneficial artificial intelligence. Building on the conceptual insights of "Common Sense Is All You Need," we propose a more formal litmus test for common sense, adopting an axiomatic approach that combines minimal prior knowledge (MPK) constraints with diagonal or Godel-style arguments to create tasks beyond the agent's known concept set. We discuss how this approach applies to the Abstraction and Reasoning Corpus (ARC), acknowledging training/test data constraints, physical or virtual embodiment, and large language models (LLMs). We also integrate observations regarding emergent deceptive hallucinations, in which more capable AI systems may intentionally fabricate plausible yet misleading outputs to disguise knowledge gaps. The overarching theme is that scaling AI without ensuring common sense risks intensifying such deceptive tendencies, thereby undermining safety and trust. Aligning with the broader goal of developing beneficial AI without causing harm, our axiomatic litmus test not only diagnoses whether an AI can handle truly novel concepts but also provides a stepping stone toward an ethical, reliable foundation for future safe, beneficial, and aligned artificial intelligence.
Related papers
- Common Sense Is All You Need [5.280511830552275]
Artificial intelligence (AI) has made significant strides in recent years, yet it continues to struggle with a fundamental aspect of cognition present in all animals: common sense.
Current AI systems often lack the ability to adapt to new situations without extensive prior knowledge.
This manuscript argues that integrating common sense into AI systems is essential for achieving true autonomy and unlocking the full societal and commercial value of AI.
arXiv Detail & Related papers (2025-01-11T21:23:41Z) - Artificial Expert Intelligence through PAC-reasoning [21.91294369791479]
Artificial Expert Intelligence (AEI) seeks to transcend the limitations of both Artificial General Intelligence (AGI) and narrow AI.
AEI seeks to integrate domain-specific expertise with critical, precise reasoning capabilities akin to those of top human experts.
arXiv Detail & Related papers (2024-12-03T13:25:18Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review [12.38351931894004]
We present the first systematic literature review of explainable methods for safe and trustworthy autonomous driving.
We identify five key contributions of XAI for safe and trustworthy AI in AD, which are interpretable design, interpretable surrogate models, interpretable monitoring, auxiliary explanations, and interpretable validation.
We propose a modular framework called SafeX to integrate these contributions, enabling explanation delivery to users while simultaneously ensuring the safety of AI models.
arXiv Detail & Related papers (2024-02-08T09:08:44Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Modelos din\^amicos aplicados \`a aprendizagem de valores em
intelig\^encia artificial [0.0]
Several researchers in the area have developed a robust, beneficial, and safe concept of AI for the preservation of humanity and the environment.
It is utmost importance that artificial intelligent agents have their values aligned with human values.
Perhaps this difficulty comes from the way we are addressing the problem of expressing values using cognitive methods.
arXiv Detail & Related papers (2020-07-30T00:56:11Z) - Dynamic Cognition Applied to Value Learning in Artificial Intelligence [0.0]
Several researchers in the area are trying to develop a robust, beneficial, and safe concept of artificial intelligence.
It is of utmost importance that artificial intelligent agents have their values aligned with human values.
A possible approach to this problem would be to use theoretical models such as SED.
arXiv Detail & Related papers (2020-05-12T03:58:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.