HEART: Achieving Timely Multi-Model Training for Vehicle-Edge-Cloud-Integrated Hierarchical Federated Learning
- URL: http://arxiv.org/abs/2501.09934v1
- Date: Fri, 17 Jan 2025 03:15:03 GMT
- Title: HEART: Achieving Timely Multi-Model Training for Vehicle-Edge-Cloud-Integrated Hierarchical Federated Learning
- Authors: Xiaohong Yang, Minghui Liwang, Xianbin Wang, Zhipeng Cheng, Seyyedali Hosseinalipour, Huaiyu Dai, Zhenzhen Jiao,
- Abstract summary: The rapid growth of AI-enabled Internet of Vehicles (IoV) calls for efficient machine learning (ML) solutions.
Vehicles often need to execute multiple ML tasks simultaneously, where this multi-model training environment introduces crucial challenges.
We propose a framework for multi-model training in dynamic VEC-HFL with the goal of minimizing global training latency.
- Score: 30.75025062952915
- License:
- Abstract: The rapid growth of AI-enabled Internet of Vehicles (IoV) calls for efficient machine learning (ML) solutions that can handle high vehicular mobility and decentralized data. This has motivated the emergence of Hierarchical Federated Learning over vehicle-edge-cloud architectures (VEC-HFL). Nevertheless, one aspect which is underexplored in the literature on VEC-HFL is that vehicles often need to execute multiple ML tasks simultaneously, where this multi-model training environment introduces crucial challenges. First, improper aggregation rules can lead to model obsolescence and prolonged training times. Second, vehicular mobility may result in inefficient data utilization by preventing the vehicles from returning their models to the network edge. Third, achieving a balanced resource allocation across diverse tasks becomes of paramount importance as it majorly affects the effectiveness of collaborative training. We take one of the first steps towards addressing these challenges via proposing a framework for multi-model training in dynamic VEC-HFL with the goal of minimizing global training latency while ensuring balanced training across various tasks-a problem that turns out to be NP-hard. To facilitate timely model training, we introduce a hybrid synchronous-asynchronous aggregation rule. Building on this, we present a novel method called Hybrid Evolutionary And gReedy allocaTion (HEART). The framework operates in two stages: first, it achieves balanced task scheduling through a hybrid heuristic approach that combines improved Particle Swarm Optimization (PSO) and Genetic Algorithms (GA); second, it employs a low-complexity greedy algorithm to determine the training priority of assigned tasks on vehicles. Experiments on real-world datasets demonstrate the superiority of HEART over existing methods.
Related papers
- MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
We present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems.
Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles.
We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Efficient Training of Large Vision Models via Advanced Automated Progressive Learning [96.71646528053651]
We present an advanced automated progressive learning (AutoProg) framework for efficient training of Large Vision Models (LVMs)
We introduce AutoProg-Zero, by enhancing the AutoProg framework with a novel zero-shot unfreezing schedule search.
Experiments show that AutoProg accelerates ViT pre-training by up to 1.85x on ImageNet and accelerates fine-tuning of diffusion models by up to 2.86x, with comparable or even higher performance.
arXiv Detail & Related papers (2024-09-06T16:24:24Z) - Adaptive and Parallel Split Federated Learning in Vehicular Edge Computing [6.004901615052089]
Vehicular edge intelligence (VEI) is a promising paradigm for enabling future intelligent transportation systems.
Federated learning (FL) is one of the fundamental technologies facilitating collaborative model training locally and aggregation.
We develop an Adaptive Split Federated Learning scheme for Vehicular Edge Computing (ASFV)
arXiv Detail & Related papers (2024-05-29T02:34:38Z) - Efficient Remote Sensing with Harmonized Transfer Learning and Modality Alignment [0.0]
"Harmonized Transfer Learning and Modality alignment (HarMA)" is a method that simultaneously satisfies task constraints, modality alignment, and single-modality uniform alignment.
HarMA achieves state-of-the-art performance in two popular multimodal retrieval tasks in the field of remote sensing.
arXiv Detail & Related papers (2024-04-28T17:20:08Z) - A Reinforcement Learning Approach for Dynamic Rebalancing in
Bike-Sharing System [11.237099288412558]
Bike-Sharing Systems provide eco-friendly urban mobility, contributing to the alleviation of traffic congestion and healthier lifestyles.
Devising effective rebalancing strategies using vehicles to redistribute bikes among stations is therefore of uttermost importance for operators.
This paper introduces atemporal reinforcement learning algorithm for the dynamic rebalancing problem with multiple vehicles.
arXiv Detail & Related papers (2024-02-05T23:46:42Z) - Model-aided Federated Reinforcement Learning for Multi-UAV Trajectory
Planning in IoT Networks [17.770665737751372]
We propose a novel model-aided federated MARL algorithm to coordinate multiple UAVs on a data harvesting mission with only limited knowledge about the environment.
A performance comparison with standard MARL algorithms demonstrates that our proposed model-aided FedQMIX algorithm reduces the need for real-world training experiences by around three magnitudes.
arXiv Detail & Related papers (2023-06-03T07:16:17Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
We propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework (DCF)
Particularly, we design an encoder-decoder structured policy network in our upper-level DRL model to allocate the tasks to different UAVs.
We also exploit another attention based policy network in our lower-level DRL model to construct the route for each UAV, with the objective to maximize the number of executed tasks.
arXiv Detail & Related papers (2022-08-04T04:35:53Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.