MultiPruner: Balanced Structure Removal in Foundation Models
- URL: http://arxiv.org/abs/2501.09949v1
- Date: Fri, 17 Jan 2025 04:24:31 GMT
- Title: MultiPruner: Balanced Structure Removal in Foundation Models
- Authors: J. Pablo Muñoz, Jinjie Yuan, Nilesh Jain,
- Abstract summary: Recently, state-of-the-art approaches for pruning large pre-trained models (LPMs) have demonstrated that the training-free removal of non-critical residual blocks in Transformers is viable for reducing model size.
We extend BlockPruner and propose MultiPruner, a pruning approach that surpasses recent training-free pruning methods by adopting a multidimensional, iterative, fine-grained pruning strategy.
- Score: 1.8434042562191815
- License:
- Abstract: Recently, state-of-the-art approaches for pruning large pre-trained models (LPMs) have demonstrated that the training-free removal of non-critical residual blocks in Transformers is viable for reducing model size, achieving results that outperform previous training-free pruning approaches. Motivated by these findings, we extend BlockPruner (Zhong et al., 2024) and propose MultiPruner, a pruning approach that surpasses recent training-free pruning methods by adopting a multidimensional, iterative, fine-grained pruning strategy. In MultiPruner, multidimensional pruning reinstates the structural balance in block-pruned models by sequentially compressing along three dimensions: i) residual blocks, ii) channels of multilayer perceptrons (MLP), and iii) attention heads. This solution enhances zero-shot accuracy on downstream tasks compared to other techniques while improving model compression ratios, producing compressed models with fewer computing and memory requirements. Extensive experiments demonstrate the advantages of the proposed method across various large pre-trained models. The code and pruning configurations are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.
Related papers
- DarwinLM: Evolutionary Structured Pruning of Large Language Models [49.55509443720372]
We propose sysname, a method for emphtraining-aware structured pruning.
sysname surpasses ShearedLlama while requiring $5times$ less training data during post-compression training.
arXiv Detail & Related papers (2025-02-11T18:59:35Z) - Singular Value Scaling: Efficient Generative Model Compression via Pruned Weights Refinement [9.454314879815337]
generative models often exhibit dominant singular vectors, hindering fine-tuning efficiency and leading to suboptimal performance.
We introduce Singular Value Scaling (SVS), a versatile technique for refining pruned weights, applicable to both model types.
SVS improves compression performance across model types without additional training costs.
arXiv Detail & Related papers (2024-12-23T08:40:08Z) - DRPruning: Efficient Large Language Model Pruning through Distributionally Robust Optimization [61.492590008258986]
Large language models (LLMs) deliver impressive results but face challenges from increasing model sizes and computational costs.
We propose DRPruning, which incorporates distributionally robust optimization to restore balanced performance across domains.
arXiv Detail & Related papers (2024-11-21T12:02:39Z) - DiP-GO: A Diffusion Pruner via Few-step Gradient Optimization [22.546989373687655]
We propose a novel pruning method that derives an efficient diffusion model via a more intelligent and differentiable pruner.
Our approach achieves 4.4 x speedup for SD-1.5 without any loss of accuracy, significantly outperforming the previous state-of-the-art methods.
arXiv Detail & Related papers (2024-10-22T12:18:24Z) - MoDeGPT: Modular Decomposition for Large Language Model Compression [59.361006801465344]
This paper introduces textbfModular bfDecomposition (MoDeGPT), a novel structured compression framework.
MoDeGPT partitions the Transformer block into modules comprised of matrix pairs and reduces the hidden dimensions.
Our experiments show MoDeGPT, without backward propagation, matches or surpasses previous structured compression methods.
arXiv Detail & Related papers (2024-08-19T01:30:14Z) - Single Parent Family: A Spectrum of Family Members from a Single Pre-Trained Foundation Model [20.054342930450055]
This paper introduces a novel method of Progressive Low Rank Decomposition (PLRD) tailored for the compression of large language models.
PLRD allows for significant reductions in computational overhead and energy consumption.
Our findings suggest that PLRD could set a new standard for the efficient scaling of LLMs.
arXiv Detail & Related papers (2024-06-28T15:27:57Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
We introduce an untrained forward model residual block within the model-based architecture to match the data consistency in the measurement domain for each instance.
Our approach offers a unified solution that is less parameter-sensitive, requires no additional data, and enables simultaneous fitting of the forward model and reconstruction in a single pass.
arXiv Detail & Related papers (2024-03-07T19:02:13Z) - Block Pruning For Faster Transformers [89.70392810063247]
We introduce a block pruning approach targeting both small and fast models.
We find that this approach learns to prune out full components of the underlying model, such as attention heads.
arXiv Detail & Related papers (2021-09-10T12:46:32Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - Dynamic Model Pruning with Feedback [64.019079257231]
We propose a novel model compression method that generates a sparse trained model without additional overhead.
We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models.
arXiv Detail & Related papers (2020-06-12T15:07:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.