Leveraging Confident Image Regions for Source-Free Domain-Adaptive Object Detection
- URL: http://arxiv.org/abs/2501.10081v1
- Date: Fri, 17 Jan 2025 09:55:41 GMT
- Title: Leveraging Confident Image Regions for Source-Free Domain-Adaptive Object Detection
- Authors: Mohamed Lamine Mekhalfi, Davide Boscaini, Fabio Poiesi,
- Abstract summary: Source-free domain-adaptive object detection is an interesting but scarcely addressed topic.
It aims at adapting a source-pretrained detector to a distinct target domain without resorting to source data during adaptation.
This paper presents a novel data augmentation approach that cuts out target image regions where the detector is confident, augments them along with their respective pseudo-labels, and joins them into a challenging target image to adapt the detector.
- Score: 6.627477206883247
- License:
- Abstract: Source-free domain-adaptive object detection is an interesting but scarcely addressed topic. It aims at adapting a source-pretrained detector to a distinct target domain without resorting to source data during adaptation. So far, there is no data augmentation scheme tailored to source-free domain-adaptive object detection. To this end, this paper presents a novel data augmentation approach that cuts out target image regions where the detector is confident, augments them along with their respective pseudo-labels, and joins them into a challenging target image to adapt the detector. As the source data is out of reach during adaptation, we implement our approach within a teacher-student learning paradigm to ensure that the model does not collapse during the adaptation procedure. We evaluated our approach on three adaptation benchmarks of traffic scenes, scoring new state-of-the-art on two of them.
Related papers
- Detect, Augment, Compose, and Adapt: Four Steps for Unsupervised Domain
Adaptation in Object Detection [7.064953237013352]
Unsupervised domain adaptation (UDA) plays a crucial role in object detection when adapting a source-trained detector to a target domain without annotated data.
We propose a novel and effective four-step UDA approach that leverages self-supervision and trains source and target data concurrently.
Our approach achieves state-of-the-art performance, improving upon the nearest competitor by more than 2% in terms of mean Average Precision (mAP)
arXiv Detail & Related papers (2023-08-29T14:48:29Z) - Dual Moving Average Pseudo-Labeling for Source-Free Inductive Domain
Adaptation [45.024029784248825]
Unsupervised domain adaptation reduces the reliance on data annotation in deep learning by adapting knowledge from a source to a target domain.
For privacy and efficiency concerns, source-free domain adaptation extends unsupervised domain adaptation by adapting a pre-trained source model to an unlabeled target domain.
We propose a new semi-supervised fine-tuning method named Dual Moving Average Pseudo-Labeling (DMAPL) for source-free inductive domain adaptation.
arXiv Detail & Related papers (2022-12-15T23:20:13Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
Training models dedicated to semantic segmentation require a large amount of pixel-wise annotated data.
Unsupervised domain adaptation approaches aim at aligning the feature distributions between the labeled source and the unlabeled target data.
Previous works attempted to include human interactions in this process under the form of sparse single-pixel annotations in the target data.
We propose a new domain adaptation framework for semantic segmentation with annotated points via active selection.
arXiv Detail & Related papers (2022-06-01T01:52:28Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the issue of domain shift.
UDA methods try to align the source and target representations to improve the generalization on the target domain.
The Source-Free Adaptation Domain (SFDA) setting aims to alleviate these concerns by adapting a source-trained model for the target domain without requiring access to the source data.
arXiv Detail & Related papers (2022-03-29T17:50:43Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Source-Free Domain Adaptive Fundus Image Segmentation with Denoised
Pseudo-Labeling [56.98020855107174]
Domain adaptation typically requires to access source domain data to utilize their distribution information for domain alignment with the target data.
In many real-world scenarios, the source data may not be accessible during the model adaptation in the target domain due to privacy issue.
We present a novel denoised pseudo-labeling method for this problem, which effectively makes use of the source model and unlabeled target data.
arXiv Detail & Related papers (2021-09-19T06:38:21Z) - Transformer-Based Source-Free Domain Adaptation [134.67078085569017]
We study the task of source-free domain adaptation (SFDA), where the source data are not available during target adaptation.
We propose a generic and effective framework based on Transformer, named TransDA, for learning a generalized model for SFDA.
arXiv Detail & Related papers (2021-05-28T23:06:26Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised adaptation adaptation (UDA) aims to transfer knowledge from a related but different well-labeled source domain to a new unlabeled target domain.
Most existing UDA methods require access to the source data, and thus are not applicable when the data are confidential and not shareable due to privacy concerns.
This paper aims to tackle a realistic setting with only a classification model available trained over, instead of accessing to the source data.
arXiv Detail & Related papers (2020-12-14T07:28:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.