Classifier Ensemble for Efficient Uncertainty Calibration of Deep Neural Networks for Image Classification
- URL: http://arxiv.org/abs/2501.10089v1
- Date: Fri, 17 Jan 2025 10:16:18 GMT
- Title: Classifier Ensemble for Efficient Uncertainty Calibration of Deep Neural Networks for Image Classification
- Authors: Michael Schulze, Nikolas Ebert, Laurenz Reichardt, Oliver Wasenmüller,
- Abstract summary: We evaluate both accuracy and calibration metrics, focusing on Expected Error (ECE) and Maximum Error (MCE)
Our work compares different methods for building simple yet efficient classifier ensembles, including majority voting and several metamodel-based approaches.
- Score: 1.0649605625763086
- License:
- Abstract: This paper investigates novel classifier ensemble techniques for uncertainty calibration applied to various deep neural networks for image classification. We evaluate both accuracy and calibration metrics, focusing on Expected Calibration Error (ECE) and Maximum Calibration Error (MCE). Our work compares different methods for building simple yet efficient classifier ensembles, including majority voting and several metamodel-based approaches. Our evaluation reveals that while state-of-the-art deep neural networks for image classification achieve high accuracy on standard datasets, they frequently suffer from significant calibration errors. Basic ensemble techniques like majority voting provide modest improvements, while metamodel-based ensembles consistently reduce ECE and MCE across all architectures. Notably, the largest of our compared metamodels demonstrate the most substantial calibration improvements, with minimal impact on accuracy. Moreover, classifier ensembles with metamodels outperform traditional model ensembles in calibration performance, while requiring significantly fewer parameters. In comparison to traditional post-hoc calibration methods, our approach removes the need for a separate calibration dataset. These findings underscore the potential of our proposed metamodel-based classifier ensembles as an efficient and effective approach to improving model calibration, thereby contributing to more reliable deep learning systems.
Related papers
- Towards Calibrated Deep Clustering Network [60.71776081164377]
In deep clustering, the estimated confidence for a sample belonging to a particular cluster greatly exceeds its actual prediction accuracy.
We propose a novel dual-head (calibration head and clustering head) deep clustering model that can effectively calibrate the estimated confidence and the actual accuracy.
Extensive experiments demonstrate the proposed calibrated deep clustering model not only surpasses state-of-the-art deep clustering methods by 10 times in terms of expected calibration error but also significantly outperforms them in terms of clustering accuracy.
arXiv Detail & Related papers (2024-03-04T11:23:40Z) - Towards Calibrated Robust Fine-Tuning of Vision-Language Models [97.19901765814431]
This work proposes a robust fine-tuning method that improves both OOD accuracy and confidence calibration simultaneously in vision language models.
We show that both OOD classification and OOD calibration errors have a shared upper bound consisting of two terms of ID data.
Based on this insight, we design a novel framework that conducts fine-tuning with a constrained multimodal contrastive loss enforcing a larger smallest singular value.
arXiv Detail & Related papers (2023-11-03T05:41:25Z) - Towards Unbiased Calibration using Meta-Regularization [6.440598446802981]
We propose to learn better-calibrated models via meta-regularization, which has two components.
We evaluate the effectiveness of the proposed approach in regularizing neural networks towards improved and unbiased calibration on three computer vision datasets.
arXiv Detail & Related papers (2023-03-27T10:00:50Z) - Calibration of Neural Networks [77.34726150561087]
This paper presents a survey of confidence calibration problems in the context of neural networks.
We analyze problem statement, calibration definitions, and different approaches to evaluation.
Empirical experiments cover various datasets and models, comparing calibration methods according to different criteria.
arXiv Detail & Related papers (2023-03-19T20:27:51Z) - Enabling Calibration In The Zero-Shot Inference of Large Vision-Language
Models [58.720142291102135]
We measure calibration across relevant variables like prompt, dataset, and architecture, and find that zero-shot inference with CLIP is miscalibrated.
A single learned temperature generalizes for each specific CLIP model across inference dataset and prompt choice.
arXiv Detail & Related papers (2023-03-11T17:14:04Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
We study the problem of semantic segmentation calibration.
Model capacity, crop size, multi-scale testing, and prediction correctness have impact on calibration.
We propose a simple, unifying, and effective approach, namely selective scaling.
arXiv Detail & Related papers (2022-12-22T22:05:16Z) - Mitigating Bias in Calibration Error Estimation [28.46667300490605]
We introduce a simulation framework that allows us to empirically show that ECE_bin can systematically underestimate or overestimate the true calibration error.
We propose a simple alternative calibration error metric, ECE_sweep, in which the number of bins is chosen to be as large as possible.
arXiv Detail & Related papers (2020-12-15T23:28:06Z) - Combining Ensembles and Data Augmentation can Harm your Calibration [33.94335246681807]
We show a surprising pathology: combining ensembles and data augmentation can harm model calibration.
We propose a simple correction, achieving the best of both worlds with significant accuracy and calibration gains over using only ensembles or data augmentation individually.
arXiv Detail & Related papers (2020-10-19T21:25:22Z) - Uncertainty Quantification and Deep Ensembles [79.4957965474334]
We show that deep-ensembles do not necessarily lead to improved calibration properties.
We show that standard ensembling methods, when used in conjunction with modern techniques such as mixup regularization, can lead to less calibrated models.
This text examines the interplay between three of the most simple and commonly used approaches to leverage deep learning when data is scarce.
arXiv Detail & Related papers (2020-07-17T07:32:24Z) - Multi-Class Uncertainty Calibration via Mutual Information
Maximization-based Binning [8.780958735684958]
Post-hoc multi-class calibration is a common approach for providing confidence estimates of deep neural network predictions.
Recent work has shown that widely used scaling methods underestimate their calibration error.
We propose a shared class-wise (sCW) calibration strategy, sharing one calibrator among similar classes.
arXiv Detail & Related papers (2020-06-23T15:31:59Z) - Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
Calibration in Deep Learning [21.08664370117846]
We show how Mix-n-Match calibration strategies can help achieve remarkably better data-efficiency and expressive power.
We also reveal potential issues in standard evaluation practices.
Our approaches outperform state-of-the-art solutions on both the calibration as well as the evaluation tasks.
arXiv Detail & Related papers (2020-03-16T17:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.