Spatio-temporal Graph Learning on Adaptive Mined Key Frames for High-performance Multi-Object Tracking
- URL: http://arxiv.org/abs/2501.10129v1
- Date: Fri, 17 Jan 2025 11:36:38 GMT
- Title: Spatio-temporal Graph Learning on Adaptive Mined Key Frames for High-performance Multi-Object Tracking
- Authors: Futian Wang, Fengxiang Liu, Xiao Wang,
- Abstract summary: Key Frame Extraction (KFE) module leverages reinforcement learning to adaptively segment videos.
Intra-Frame Feature Fusion (IFF) module uses a Graph Convolutional Network (GCN) to facilitate information exchange between the target and surrounding objects.
Our proposed tracker achieves impressive results on the MOT17 dataset.
- Score: 5.746443489229576
- License:
- Abstract: In the realm of multi-object tracking, the challenge of accurately capturing the spatial and temporal relationships between objects in video sequences remains a significant hurdle. This is further complicated by frequent occurrences of mutual occlusions among objects, which can lead to tracking errors and reduced performance in existing methods. Motivated by these challenges, we propose a novel adaptive key frame mining strategy that addresses the limitations of current tracking approaches. Specifically, we introduce a Key Frame Extraction (KFE) module that leverages reinforcement learning to adaptively segment videos, thereby guiding the tracker to exploit the intrinsic logic of the video content. This approach allows us to capture structured spatial relationships between different objects as well as the temporal relationships of objects across frames. To tackle the issue of object occlusions, we have developed an Intra-Frame Feature Fusion (IFF) module. Unlike traditional graph-based methods that primarily focus on inter-frame feature fusion, our IFF module uses a Graph Convolutional Network (GCN) to facilitate information exchange between the target and surrounding objects within a frame. This innovation significantly enhances target distinguishability and mitigates tracking loss and appearance similarity due to occlusions. By combining the strengths of both long and short trajectories and considering the spatial relationships between objects, our proposed tracker achieves impressive results on the MOT17 dataset, i.e., 68.6 HOTA, 81.0 IDF1, 66.6 AssA, and 893 IDS, proving its effectiveness and accuracy.
Related papers
- Understanding Long Videos via LLM-Powered Entity Relation Graphs [51.13422967711056]
GraphVideoAgent is a framework that maps and monitors the evolving relationships between visual entities throughout the video sequence.
Our approach demonstrates remarkable effectiveness when tested against industry benchmarks.
arXiv Detail & Related papers (2025-01-27T10:57:24Z) - Exploiting Multimodal Spatial-temporal Patterns for Video Object Tracking [53.33637391723555]
We propose a unified multimodal spatial-temporal tracking approach named STTrack.
In contrast to previous paradigms, we introduced a temporal state generator (TSG) that continuously generates a sequence of tokens containing multimodal temporal information.
These temporal information tokens are used to guide the localization of the target in the next time state, establish long-range contextual relationships between video frames, and capture the temporal trajectory of the target.
arXiv Detail & Related papers (2024-12-20T09:10:17Z) - Temporally Consistent Dynamic Scene Graphs: An End-to-End Approach for Action Tracklet Generation [1.6584112749108326]
TCDSG, Temporally Consistent Dynamic Scene Graphs, is an end-to-end framework that detects, tracks, and links subject-object relationships across time.
Our work sets a new standard in multi-frame video analysis, opening new avenues for high-impact applications in surveillance, autonomous navigation, and beyond.
arXiv Detail & Related papers (2024-12-03T20:19:20Z) - Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
Composite Node Message Passing Network (CoNo-Link) is a framework for modeling ultra-long frames information for association.
In addition to the previous method of treating objects as nodes, the network innovatively treats object trajectories as nodes for information interaction.
Our model can learn better predictions on longer-time scales by adding composite nodes.
arXiv Detail & Related papers (2023-12-14T14:00:30Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
We propose a simple yet effective two-stage feature learning paradigm to jointly learn single-shot and multi-shot features for different targets.
Our method has achieved significant improvements on MOT17 and MOT20 datasets while reaching state-of-the-art performance on DanceTrack dataset.
arXiv Detail & Related papers (2023-11-17T08:17:49Z) - UnsMOT: Unified Framework for Unsupervised Multi-Object Tracking with
Geometric Topology Guidance [6.577227592760559]
UnsMOT is a novel framework that combines appearance and motion features of objects with geometric information to provide more accurate tracking.
Experimental results show remarkable performance in terms of HOTA, IDF1, and MOTA metrics in comparison with state-of-the-art methods.
arXiv Detail & Related papers (2023-09-03T04:58:12Z) - ReST: A Reconfigurable Spatial-Temporal Graph Model for Multi-Camera
Multi-Object Tracking [11.619493960418176]
Multi-Camera Multi-Object Tracking (MC-MOT) utilizes information from multiple views to better handle problems with occlusion and crowded scenes.
Current graph-based methods do not effectively utilize information regarding spatial and temporal consistency.
We propose a novel reconfigurable graph model that first associates all detected objects across cameras spatially before reconfiguring it into a temporal graph.
arXiv Detail & Related papers (2023-08-25T08:02:04Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
We introduce a simple, efficient, and effective two-stage detector, termed as Ret3D.
At the core of Ret3D is the utilization of novel intra-frame and inter-frame relation modules.
With negligible extra overhead, Ret3D achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-08-18T03:48:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.