Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores
- URL: http://arxiv.org/abs/2501.10139v2
- Date: Sun, 09 Feb 2025 22:05:43 GMT
- Title: Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores
- Authors: Jivat Neet Kaur, Michael I. Jordan, Ahmed Alaa,
- Abstract summary: It is impossible to achieve exact, distribution-free conditional coverage in finite samples.
We propose an alternative conformal prediction algorithm that targets coverage where it matters most.
- Score: 52.92618442300405
- License:
- Abstract: Standard conformal prediction offers a marginal guarantee on coverage, but for prediction sets to be truly useful, they should ideally ensure coverage conditional on each test point. Unfortunately, it is impossible to achieve exact, distribution-free conditional coverage in finite samples. In this work, we propose an alternative conformal prediction algorithm that targets coverage where it matters most--in instances where a classifier is overconfident in its incorrect predictions. We start by dissecting miscoverage events in marginally-valid conformal prediction, and show that miscoverage rates vary based on the classifier's confidence and its deviation from the Bayes optimal classifier. Motivated by this insight, we develop a variant of conformal prediction that targets coverage conditional on a reduced set of two variables: the classifier's confidence in a prediction and a nonparametric trust score that measures its deviation from the Bayes classifier. Empirical evaluation on multiple image datasets shows that our method generally improves conditional coverage properties compared to standard conformal prediction, including class-conditional coverage, coverage over arbitrary subgroups, and coverage over demographic groups.
Related papers
- Sparse Activations as Conformal Predictors [19.298282860984116]
We find a novel connection between conformal prediction and sparse softmax-like transformations.
We introduce new non-conformity scores for classification that make the calibration process correspond to the widely used temperature scaling method.
We show that the proposed method achieves competitive results in terms of coverage, efficiency, and adaptiveness.
arXiv Detail & Related papers (2025-02-20T17:53:41Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Distribution-free Conformal Prediction for Ordinal Classification [0.0]
Ordinal classification is common in real applications where the target variable has natural ordering among the class labels.
New conformal prediction methods are developed for constructing contiguous and non-contiguous prediction sets.
arXiv Detail & Related papers (2024-04-25T13:49:59Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
We study fair machine learning (ML) under predictive uncertainty to enable reliable and trustworthy decision-making.
We propose Equal Opportunity of Coverage (EOC) that aims to achieve two properties: (1) coverage rates for different groups with similar outcomes are close, and (2) the coverage rate for the entire population remains at a predetermined level.
arXiv Detail & Related papers (2023-11-03T21:19:59Z) - Class-Conditional Conformal Prediction with Many Classes [60.8189977620604]
We propose a method called clustered conformal prediction that clusters together classes having "similar" conformal scores.
We find that clustered conformal typically outperforms existing methods in terms of class-conditional coverage and set size metrics.
arXiv Detail & Related papers (2023-06-15T17:59:02Z) - Conformalizing Machine Translation Evaluation [9.89901717499058]
Several uncertainty estimation methods have been recently proposed for machine translation evaluation.
We show that the majority of them tend to underestimate model uncertainty, and as a result they often produce misleading confidence intervals that do not cover the ground truth.
We propose as an alternative the use of conformal prediction, a distribution-free method to obtain confidence intervals with a theoretically established guarantee on coverage.
arXiv Detail & Related papers (2023-06-09T19:36:18Z) - Post-selection Inference for Conformal Prediction: Trading off Coverage
for Precision [0.0]
Traditionally, conformal prediction inference requires a data-independent specification of miscoverage level.
We develop simultaneous conformal inference to account for data-dependent miscoverage levels.
arXiv Detail & Related papers (2023-04-12T20:56:43Z) - Practical Adversarial Multivalid Conformal Prediction [27.179891682629183]
We give a generic conformal prediction method for sequential prediction.
It achieves target empirical coverage guarantees against adversarially chosen data.
It is computationally lightweight -- comparable to split conformal prediction.
arXiv Detail & Related papers (2022-06-02T14:33:00Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.