A Vision-Language Framework for Multispectral Scene Representation Using Language-Grounded Features
- URL: http://arxiv.org/abs/2501.10144v1
- Date: Fri, 17 Jan 2025 12:12:33 GMT
- Title: A Vision-Language Framework for Multispectral Scene Representation Using Language-Grounded Features
- Authors: Enes Karanfil, Nevrez Imamoglu, Erkut Erdem, Aykut Erdem,
- Abstract summary: We present a vision-language framework named Spectral LLaVA, which integrates multispectral data with vision-language alignment techniques to enhance scene representation and description.
Our results highlight Spectral LLaVA's ability to produce detailed and accurate descriptions, particularly for scenarios where RGB data alone proves inadequate.
- Score: 15.700048595212051
- License:
- Abstract: Scene understanding in remote sensing often faces challenges in generating accurate representations for complex environments such as various land use areas or coastal regions, which may also include snow, clouds, or haze. To address this, we present a vision-language framework named Spectral LLaVA, which integrates multispectral data with vision-language alignment techniques to enhance scene representation and description. Using the BigEarthNet v2 dataset from Sentinel-2, we establish a baseline with RGB-based scene descriptions and further demonstrate substantial improvements through the incorporation of multispectral information. Our framework optimizes a lightweight linear projection layer for alignment while keeping the vision backbone of SpectralGPT frozen. Our experiments encompass scene classification using linear probing and language modeling for jointly performing scene classification and description generation. Our results highlight Spectral LLaVA's ability to produce detailed and accurate descriptions, particularly for scenarios where RGB data alone proves inadequate, while also enhancing classification performance by refining SpectralGPT features into semantically meaningful representations.
Related papers
- SpectralGaussians: Semantic, spectral 3D Gaussian splatting for multi-spectral scene representation, visualization and analysis [3.8834382997684087]
We propose a novel cross-spectral rendering framework based on 3D Gaussian Splatting (3DGS)
This framework generates realistic and semantically meaningful splats from registered multi-view spectrum and segmentation maps.
Our contributions address challenges in multi-spectral scene representation, rendering, and editing, offering new possibilities for diverse applications.
arXiv Detail & Related papers (2024-08-13T15:32:54Z) - SEDS: Semantically Enhanced Dual-Stream Encoder for Sign Language Retrieval [82.51117533271517]
Previous works typically only encode RGB videos to obtain high-level semantic features.
Existing RGB-based sign retrieval works suffer from the huge memory cost of dense visual data embedding in end-to-end training.
We propose a novel sign language representation framework called Semantically Enhanced Dual-Stream.
arXiv Detail & Related papers (2024-07-23T11:31:11Z) - Multi-Granularity Language-Guided Multi-Object Tracking [95.91263758294154]
We propose a new multi-object tracking framework, named LG-MOT, that explicitly leverages language information at different levels of granularity.
At inference, our LG-MOT uses the standard visual features without relying on annotated language descriptions.
Our LG-MOT achieves an absolute gain of 2.2% in terms of target object association (IDF1 score) compared to the baseline using only visual features.
arXiv Detail & Related papers (2024-06-07T11:18:40Z) - RegionGPT: Towards Region Understanding Vision Language Model [88.42271128373191]
RegionGPT (short as RGPT) is a novel framework designed for complex region-level captioning and understanding.
We develop an automated region caption data generation pipeline, enriching the training set with detailed region-level captions.
We demonstrate that a universal RGPT model can be effectively applied and significantly enhancing performance across a range of region-level tasks.
arXiv Detail & Related papers (2024-03-04T18:58:08Z) - A generic self-supervised learning (SSL) framework for representation
learning from spectra-spatial feature of unlabeled remote sensing imagery [4.397725469518669]
Self-supervised learning (SSL) enables the models to learn a representation from orders of magnitude more unlabelled data.
This work has designed a novel SSL framework that is capable of learning representation from both spectra-spatial information of unlabelled data.
arXiv Detail & Related papers (2023-06-27T23:50:43Z) - GeoVLN: Learning Geometry-Enhanced Visual Representation with Slot
Attention for Vision-and-Language Navigation [52.65506307440127]
We propose GeoVLN, which learns Geometry-enhanced visual representation based on slot attention for robust Visual-and-Language Navigation.
We employ V&L BERT to learn a cross-modal representation that incorporate both language and vision informations.
arXiv Detail & Related papers (2023-05-26T17:15:22Z) - Vision Transformers: From Semantic Segmentation to Dense Prediction [139.15562023284187]
We explore the global context learning potentials of vision transformers (ViTs) for dense visual prediction.
Our motivation is that through learning global context at full receptive field layer by layer, ViTs may capture stronger long-range dependency information.
We formulate a family of Hierarchical Local-Global (HLG) Transformers, characterized by local attention within windows and global-attention across windows in a pyramidal architecture.
arXiv Detail & Related papers (2022-07-19T15:49:35Z) - SOAT: A Scene- and Object-Aware Transformer for Vision-and-Language
Navigation [57.12508968239015]
This work presents a transformer-based vision-and-language navigation (VLN) agent.
It uses two different visual encoders -- a scene classification network and an object detector.
Scene features contribute high-level contextual information that supports object-level processing.
arXiv Detail & Related papers (2021-10-27T03:29:34Z) - Multi-Granularity Canonical Appearance Pooling for Remote Sensing Scene
Classification [0.34376560669160383]
We propose a novel Multi-Granularity Canonical Appearance Pooling (MG-CAP) to automatically capture the latent ontological structure of remote sensing datasets.
For each specific granularity, we discover the canonical appearance from a set of pre-defined transformations and learn the corresponding CNN features through a maxout-based Siamese style architecture.
We provide a stable solution for training the eigenvalue-decomposition function (EIG) in a GPU and demonstrate the corresponding back-propagation using matrix calculus.
arXiv Detail & Related papers (2020-04-09T11:24:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.