Modelling Activity Scheduling Behaviour with Deep Generative Machine Learning
- URL: http://arxiv.org/abs/2501.10221v1
- Date: Fri, 17 Jan 2025 14:37:54 GMT
- Title: Modelling Activity Scheduling Behaviour with Deep Generative Machine Learning
- Authors: Fred Shone, Tim Hillel,
- Abstract summary: We model human activity scheduling behaviour using a deep generative machine learning approach.
Our approach learns human preferences and scheduling logic without the need for complex interacting combinations of sub-models and custom-rules.
We contribute a novel schedule representation and comprehensive evaluation framework for generated schedules.
- Score: 0.0
- License:
- Abstract: We model human activity scheduling behaviour using a deep generative machine learning approach. Activity schedules, which represent the activities and associated travel behaviours of individuals, are a core component of many applied models in the transport, energy and epidemiology domains. Our data driven approach learns human preferences and scheduling logic without the need for complex interacting combinations of sub-models and custom-rules, this makes our approach significantly faster and simpler to operate that existing approaches. We find activity schedule data combines aspects of both continuous image data and also discrete text data, requiring novel approaches. We additionally contribute a novel schedule representation and comprehensive evaluation framework for generated schedules. Evaluation shows our approach is able to rapidly generate large, diverse and realistic synthetic samples of activity schedules.
Related papers
- End-to-End Predictive Planner for Autonomous Driving with Consistency Models [5.966385886363771]
Trajectory prediction and planning are fundamental components for autonomous vehicles to navigate safely and efficiently in dynamic environments.
Traditionally, these components have often been treated as separate modules, limiting the ability to perform interactive planning.
We present a novel unified and data-driven framework that integrates prediction and planning with a single consistency model.
arXiv Detail & Related papers (2025-02-12T00:26:01Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - A Framework for Realistic Simulation of Daily Human Activity [1.8877825068318652]
This paper presents a framework for simulating daily human activity patterns in home environments at scale.
We introduce a method for specifying day-to-day variation in schedules and present a bidirectional constraint propagation algorithm for generating schedules from templates.
arXiv Detail & Related papers (2023-11-26T19:50:23Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Learning to Simulate Daily Activities via Modeling Dynamic Human Needs [24.792813473159505]
We propose a knowledge-driven simulation framework based on generative adversarial imitation learning.
Our core idea is to model the evolution of human needs as the underlying mechanism that drives activity generation in the simulation model.
Our framework outperforms the state-of-the-art baselines in terms of data fidelity and utility.
arXiv Detail & Related papers (2023-02-09T12:30:55Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Curious Exploration via Structured World Models Yields Zero-Shot Object
Manipulation [19.840186443344]
We propose to use structured world models to incorporate inductive biases in the control loop to achieve sample-efficient exploration.
Our method generates free-play behavior that starts to interact with objects early on and develops more complex behavior over time.
arXiv Detail & Related papers (2022-06-22T22:08:50Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
We devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe)
To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice.
To enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices.
arXiv Detail & Related papers (2021-09-24T07:44:27Z) - A novel activity pattern generation incorporating deep learning for
transport demand models [0.0]
This paper proposes a novel activity pattern generation framework by incorporating deep learning with travel domain knowledge.
We develop different deep neural networks with entity embedding and random forest models to classify activity type.
Results show high accuracy for the start time and end time of work and school activities.
arXiv Detail & Related papers (2021-04-06T04:07:05Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Inferring Temporal Compositions of Actions Using Probabilistic Automata [61.09176771931052]
We propose to express temporal compositions of actions as semantic regular expressions and derive an inference framework using probabilistic automata.
Our approach is different from existing works that either predict long-range complex activities as unordered sets of atomic actions, or retrieve videos using natural language sentences.
arXiv Detail & Related papers (2020-04-28T00:15:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.