GSTAR: Gaussian Surface Tracking and Reconstruction
- URL: http://arxiv.org/abs/2501.10283v2
- Date: Mon, 20 Jan 2025 12:34:18 GMT
- Title: GSTAR: Gaussian Surface Tracking and Reconstruction
- Authors: Chengwei Zheng, Lixin Xue, Juan Zarate, Jie Song,
- Abstract summary: GSTAR is a novel method that achieves photo-realistic rendering, accurate surface reconstruction, and reliable 3D tracking for general dynamic scenes with changing topology.
In regions where topology changes, GSTAR adaptively unbinds Gaussians from the mesh, enabling accurate registration and the generation of new surfaces.
Our method effectively tracks and reconstructs dynamic surfaces, enabling a range of applications.
- Score: 9.017056233547084
- License:
- Abstract: 3D Gaussian Splatting techniques have enabled efficient photo-realistic rendering of static scenes. Recent works have extended these approaches to support surface reconstruction and tracking. However, tracking dynamic surfaces with 3D Gaussians remains challenging due to complex topology changes, such as surfaces appearing, disappearing, or splitting. To address these challenges, we propose GSTAR, a novel method that achieves photo-realistic rendering, accurate surface reconstruction, and reliable 3D tracking for general dynamic scenes with changing topology. Given multi-view captures as input, GSTAR binds Gaussians to mesh faces to represent dynamic objects. For surfaces with consistent topology, GSTAR maintains the mesh topology and tracks the meshes using Gaussians. In regions where topology changes, GSTAR adaptively unbinds Gaussians from the mesh, enabling accurate registration and the generation of new surfaces based on these optimized Gaussians. Additionally, we introduce a surface-based scene flow method that provides robust initialization for tracking between frames. Experiments demonstrate that our method effectively tracks and reconstructs dynamic surfaces, enabling a range of applications. Our project page with the code release is available at https://eth-ait.github.io/GSTAR/.
Related papers
- G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
We introduce G2SDF, a novel approach that integrates a neural implicit Signed Distance Field into the Gaussian Splatting framework.
G2SDF achieves superior quality than prior works while maintaining the efficiency of 3DGS.
arXiv Detail & Related papers (2024-11-25T20:07:07Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.
It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation [10.250715657201363]
We introduce DreamMesh4D, a novel framework combining mesh representation with geometric skinning technique to generate high-quality 4D object from a monocular video.
Our method is compatible with modern graphic pipelines, showcasing its potential in the 3D gaming and film industry.
arXiv Detail & Related papers (2024-10-09T10:41:08Z) - Space-time 2D Gaussian Splatting for Accurate Surface Reconstruction under Complex Dynamic Scenes [30.32214593068206]
We present a space-time 2D Gaussian Splatting approach to tackle the dynamic contents and the occlusions in complex scenes.
Specifically, to improve geometric quality in dynamic scenes, we learn canonical 2D Gaussian splats and deform these 2D Gaussian splats.
We also introduce a compositional opacity strategy, which further reduces the surface recovery of those occluded areas.
Experiments on real-world sparse-view video datasets and monocular dynamic datasets demonstrate that our reconstructions outperform state-of-the-art methods.
arXiv Detail & Related papers (2024-09-27T15:50:36Z) - DynaSurfGS: Dynamic Surface Reconstruction with Planar-based Gaussian Splatting [13.762831851385227]
We propose DynaSurfGS to achieve both photorealistic rendering and high-fidelity surface reconstruction of dynamic scenarios.
The framework first incorporates Gaussian features from 4D neural voxels with the planar-based Gaussian Splatting to facilitate precise surface reconstruction.
It also incorporates the as-rigid-as-possible (ARAP) constraint to maintain the approximate rigidity of local neighborhoods of 3D Gaussians between timesteps.
arXiv Detail & Related papers (2024-08-26T01:36:46Z) - Dynamic Gaussian Marbles for Novel View Synthesis of Casual Monocular Videos [58.22272760132996]
We show that existing 4D Gaussian methods dramatically fail in this setup because the monocular setting is underconstrained.
We propose Dynamic Gaussian Marbles, which consist of three core modifications that target the difficulties of the monocular setting.
We evaluate on the Nvidia Dynamic Scenes dataset and the DyCheck iPhone dataset, and show that Gaussian Marbles significantly outperforms other Gaussian baselines in quality.
arXiv Detail & Related papers (2024-06-26T19:37:07Z) - Dynamic Gaussians Mesh: Consistent Mesh Reconstruction from Monocular Videos [27.531394287148384]
We introduce Dynamic Gaussians Mesh (DG-Mesh), a framework to reconstruct a high-fidelity and time-consistent mesh given a single monocular video.
Our work leverages the recent advancement in 3D Gaussian Splatting to construct the mesh sequence with temporal consistency from a video.
We introduce the Gaussian-Mesh Anchoring, which encourages evenly distributed Gaussians, resulting better mesh reconstruction through mesh-guided densification and pruning on the deformed Gaussians.
arXiv Detail & Related papers (2024-04-18T17:58:16Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
It is challenging for users to directly deform or manipulate implicit representations with large deformations in the real-time fashion.
We develop a novel GS-based method that enables interactive deformation.
Our approach achieves high-quality reconstruction and effective deformation, while maintaining the promising rendering results at a high frame rate.
arXiv Detail & Related papers (2024-02-07T12:36:54Z) - NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting
Guidance [59.08521048003009]
We propose a neural implicit surface reconstruction pipeline with guidance from 3D Gaussian Splatting to recover highly detailed surfaces.
The advantage of 3D Gaussian Splatting is that it can generate dense point clouds with detailed structure.
We introduce a scale regularizer to pull the centers close to the surface by enforcing the 3D Gaussians to be extremely thin.
arXiv Detail & Related papers (2023-12-01T07:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.