Beyond the Sum: Unlocking AI Agents Potential Through Market Forces
- URL: http://arxiv.org/abs/2501.10388v2
- Date: Thu, 23 Jan 2025 22:53:04 GMT
- Title: Beyond the Sum: Unlocking AI Agents Potential Through Market Forces
- Authors: Jordi Montes Sanabria, Pol Alvarez Vecino,
- Abstract summary: AI agents have the theoretical capacity to operate as independent economic actors within digital markets.
Existing digital infrastructure presents significant barriers to their participation.
We argue that addressing these infrastructure challenges represents a fundamental step toward enabling new forms of economic organization.
- Score: 0.0
- License:
- Abstract: The emergence of Large Language Models has fundamentally transformed the capabilities of AI agents, enabling a new class of autonomous agents capable of interacting with their environment through dynamic code generation and execution. These agents possess the theoretical capacity to operate as independent economic actors within digital markets, offering unprecedented potential for value creation through their distinct advantages in operational continuity, perfect replication, and distributed learning capabilities. However, contemporary digital infrastructure, architected primarily for human interaction, presents significant barriers to their participation. This work presents a systematic analysis of the infrastructure requirements necessary for AI agents to function as autonomous participants in digital markets. We examine four key areas - identity and authorization, service discovery, interfaces, and payment systems - to show how existing infrastructure actively impedes agent participation. We argue that addressing these infrastructure challenges represents more than a technical imperative; it constitutes a fundamental step toward enabling new forms of economic organization. Much as traditional markets enable human intelligence to coordinate complex activities beyond individual capability, markets incorporating AI agents could dramatically enhance economic efficiency through continuous operation, perfect information sharing, and rapid adaptation to changing conditions. The infrastructure challenges identified in this work represent key barriers to realizing this potential.
Related papers
- Governing the Agent-to-Agent Economy of Trust via Progressive Decentralization [0.0]
I propose a research agenda to address the question of agent-to-agent trust using AgentBound Tokens.
By staking ABTs as collateral for autonomous actions within an agent-to-agent network via a proof-of-stake mechanism, agents may be incentivized towards ethical behavior.
arXiv Detail & Related papers (2025-01-28T00:50:35Z) - Governing AI Agents [0.2913760942403036]
Article looks at the economic theory of principal-agent problems and the common law doctrine of agency relationships.
It identifies problems arising from AI agents, including issues of information asymmetry, discretionary authority, and loyalty.
It argues that new technical and legal infrastructure is needed to support governance principles of inclusivity, visibility, and liability.
arXiv Detail & Related papers (2025-01-14T07:55:18Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
We build a self-contained environment with data that mimics a small software company environment.
We find that with the most competitive agent, 24% of the tasks can be completed autonomously.
This paints a nuanced picture on task automation with LM agents.
arXiv Detail & Related papers (2024-12-18T18:55:40Z) - Latent-Predictive Empowerment: Measuring Empowerment without a Simulator [56.53777237504011]
We present Latent-Predictive Empowerment (LPE), an algorithm that can compute empowerment in a more practical manner.
LPE learns large skillsets by maximizing an objective that is a principled replacement for the mutual information between skills and states.
arXiv Detail & Related papers (2024-10-15T00:41:18Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - QuantAgent: Seeking Holy Grail in Trading by Self-Improving Large
Language Model [14.800710112671226]
This paper introduces a principled framework to address the core challenge of efficiently building and integrating a domain-specific knowledge base.
In the inner loop, the agent refines its responses by drawing from its knowledge base, while in the outer loop, these responses are tested in real-world scenarios.
We instantiate this framework through an autonomous agent for mining trading signals named QuantAgent.
arXiv Detail & Related papers (2024-02-06T06:47:14Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - Analyzing Power Grid, ICT, and Market Without Domain Knowledge Using
Distributed Artificial Intelligence [0.0]
Cyber-physical systems, such as our energy infrastructure, are becoming increasingly complex.
This paper introduces the concept for an application of distributed artificial intelligence as a self-adaptive analysis tool.
arXiv Detail & Related papers (2020-06-10T21:32:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.