Prediction Model of Aqua Fisheries Using IoT Devices
- URL: http://arxiv.org/abs/2501.10430v1
- Date: Sat, 11 Jan 2025 13:46:10 GMT
- Title: Prediction Model of Aqua Fisheries Using IoT Devices
- Authors: Md. Monirul Islam,
- Abstract summary: This thesis proposes an IoT-based framework using sensors and Arduino for efficient monitoring and control of water quality.
Different sensors including pH, temperature, and turbidity are placed in cultivating pond water and each of them is connected to a common microcontroller board.
The sensors read the data from the water and store it as a CSV file in an IoT cloud named Thingspeak through the Arduino Microcontroller.
- Score: 0.6526824510982799
- License:
- Abstract: Aquaculture involves cultivating marine and freshwater organisms, with real-time monitoring of aquatic parameters being crucial in fish farming. This thesis proposes an IoT-based framework using sensors and Arduino for efficient monitoring and control of water quality. Different sensors including pH, temperature, and turbidity are placed in cultivating pond water and each of them is connected to a common microcontroller board built on an Arduino Uno. The sensors read the data from the water and store it as a CSV file in an IoT cloud named Thingspeak through the Arduino Microcontroller. In the experimental part, we collected data from 5 ponds with various sizes and environments. After getting the real-time data, we compared these with the standard reference values. As a result, we can make the decision about which ponds are satisfactory for cultivating fish and what is not. After that, we labeled the data with 11 fish categories including Katla, sing, prawn, rui, koi, pangas, tilapia, silvercarp, karpio, magur, and shrimp. In addition, the data were analyzed using 10 machine learning (ML) algorithms containing J48, Random Forest, K-NN, K*, LMT, REPTree, JRIP, PART, Decision Table, and Logit boost. After experimental evaluation, it was observed among 5 ponds, only three ponds were perfect for fish farming, where these 3 ponds only satisfied the standard reference values of pH (6.5-8.5), Temperature (16-24)oC, Turbidity (below 10)ntu, Conductivity (970-1825){\mu}S/cm, and Depth (1-4) meter. Among the state-of-the-art machine learning algorithms, Random Forest achieved the highest score of performance metrics as accuracy 94.42%, kappa statistics 93.5%, and Avg. TP Rate 94.4%. In addition, we calculated the BOD, COD, and DO for one scenario. This study includes details of the proposed IoT system's prototype hardware.
Related papers
- Precision Aquaculture: An Integrated Computer Vision and IoT Approach for Optimized Tilapia Feeding [1.9198713957364215]
Traditional fish farming practices lead to inefficient feeding, resulting in environmental issues and reduced productivity.
We developed an innovative system combining computer vision and IoT technologies for precise Tilapia feeding.
Preliminary estimates suggest this approach could increase production up to 58 times compared to traditional farms.
arXiv Detail & Related papers (2024-09-13T10:27:27Z) - FishMOT: A Simple and Effective Method for Fish Tracking Based on IoU
Matching [11.39414015803651]
FishMOT is a novel fish tracking approach combining object detection and objectoU matching.
The method exhibits excellent robustness and generalizability for varying environments and fish numbers.
arXiv Detail & Related papers (2023-09-06T13:16:41Z) - DeepSeaNet: Improving Underwater Object Detection using EfficientDet [0.0]
This project involves implementing and evaluating various object detection models on an annotated underwater dataset.
The dataset comprises annotated image sequences of fish, crabs, starfish, and other aquatic animals captured in Limfjorden water with limited visibility.
I compare the results of YOLOv3 (31.10% mean Average Precision (mAP)), YOLOv4 (83.72% mAP), YOLOv5 (97.6%), YOLOv8 (98.20%), EfficientDet (98.56% mAP) and Detectron2 (95.20% mAP) on the same dataset.
arXiv Detail & Related papers (2023-05-26T13:41:35Z) - RGB-D Indiscernible Object Counting in Underwater Scenes [105.05477155558398]
Indiscernible object counting (IOC) aims to count objects that are blended with respect to their surroundings.
We present a large-scale dataset IOCfish5K which contains a total of 5,637 high-resolution images and 024,659 annotated center points.
arXiv Detail & Related papers (2023-04-23T15:09:02Z) - Ultra-low Power Deep Learning-based Monocular Relative Localization
Onboard Nano-quadrotors [64.68349896377629]
This work presents a novel autonomous end-to-end system that addresses the monocular relative localization, through deep neural networks (DNNs), of two peer nano-drones.
To cope with the ultra-constrained nano-drone platform, we propose a vertically-integrated framework, including dataset augmentation, quantization, and system optimizations.
Experimental results show that our DNN can precisely localize a 10cm-size target nano-drone by employing only low-resolution monochrome images, up to 2m distance.
arXiv Detail & Related papers (2023-03-03T14:14:08Z) - TempNet: Temporal Attention Towards the Detection of Animal Behaviour in
Videos [63.85815474157357]
We propose an efficient computer vision- and deep learning-based method for the detection of biological behaviours in videos.
TempNet uses an encoder bridge and residual blocks to maintain model performance with a two-staged, spatial, then temporal, encoder.
We demonstrate its application to the detection of sablefish (Anoplopoma fimbria) startle events.
arXiv Detail & Related papers (2022-11-17T23:55:12Z) - Deep object detection for waterbird monitoring using aerial imagery [56.1262568293658]
In this work, we present a deep learning pipeline that can be used to precisely detect, count, and monitor waterbirds using aerial imagery collected by a commercial drone.
By utilizing convolutional neural network-based object detectors, we show that we can detect 16 classes of waterbird species that are commonly found in colonial nesting islands along the Texas coast.
arXiv Detail & Related papers (2022-10-10T17:37:56Z) - Research on Optimization Method of Multi-scale Fish Target Fast
Detection Network [11.99307231512725]
The accuracy of testing the network with 2000 fish images reached 94.37%, and the computational complexity of the network BFLOPS was only 5.47.
The results show that BTP-Yolov3 has smaller model parameters, faster calculation speed, and lower energy consumption during operation.
arXiv Detail & Related papers (2021-04-11T16:53:34Z) - Tuna Nutriment Tracking using Trajectory Mapping in Application to
Aquaculture Fish Tank [0.0]
Estimating a state of fishes in a tank and adjusting an amount of nutriments play an important role to manage cost of fish feeding system.
Our approach is based on tracking nutriments on videos collected from an active aquaculture fish farm.
arXiv Detail & Related papers (2021-03-10T06:02:19Z) - Movement Tracks for the Automatic Detection of Fish Behavior in Videos [63.85815474157357]
We offer a dataset of sablefish (Anoplopoma fimbria) startle behaviors in underwater videos, and investigate the use of deep learning (DL) methods for behavior detection on it.
Our proposed detection system identifies fish instances using DL-based frameworks, determines trajectory tracks, derives novel behavior-specific features, and employs Long Short-Term Memory (LSTM) networks to identify startle behavior in sablefish.
arXiv Detail & Related papers (2020-11-28T05:51:19Z) - Real-Time target detection in maritime scenarios based on YOLOv3 model [65.35132992156942]
A novel ships dataset is proposed consisting of more than 56k images of marine vessels collected by means of web-scraping.
A YOLOv3 single-stage detector based on Keras API is built on top of this dataset.
arXiv Detail & Related papers (2020-02-10T15:25:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.