Village-Net Clustering: A Rapid approach to Non-linear Unsupervised Clustering of High-Dimensional Data
- URL: http://arxiv.org/abs/2501.10471v1
- Date: Thu, 16 Jan 2025 06:56:43 GMT
- Title: Village-Net Clustering: A Rapid approach to Non-linear Unsupervised Clustering of High-Dimensional Data
- Authors: Aditya Ballal, Esha Datta, Gregory A. DePaul, Erik Carlsson, Ye Chen-Izu, Javier E. López, Leighton T. Izu,
- Abstract summary: We develop an unsupervised clustering algorithm, we call "Village-Net"
The algorithm operates in two phases: first, utilizing K-Means clustering, it divides the dataset into distinct subsets we refer to as "villages"
We present extensive benchmarking on extant real-world datasets with known ground-truth labels to showcase its competitive performance.
- Score: 0.0
- License:
- Abstract: Clustering large high-dimensional datasets with diverse variable is essential for extracting high-level latent information from these datasets. Here, we developed an unsupervised clustering algorithm, we call "Village-Net". Village-Net is specifically designed to effectively cluster high-dimension data without priori knowledge on the number of existing clusters. The algorithm operates in two phases: first, utilizing K-Means clustering, it divides the dataset into distinct subsets we refer to as "villages". Next, a weighted network is created, with each node representing a village, capturing their proximity relationships. To achieve optimal clustering, we process this network using a community detection algorithm called Walk-likelihood Community Finder (WLCF), a community detection algorithm developed by one of our team members. A salient feature of Village-Net Clustering is its ability to autonomously determine an optimal number of clusters for further analysis based on inherent characteristics of the data. We present extensive benchmarking on extant real-world datasets with known ground-truth labels to showcase its competitive performance, particularly in terms of the normalized mutual information (NMI) score, when compared to other state-of-the-art methods. The algorithm is computationally efficient, boasting a time complexity of O(N*k*d), where N signifies the number of instances, k represents the number of villages and d represents the dimension of the dataset, which makes it well suited for effectively handling large-scale datasets.
Related papers
- UniForCE: The Unimodality Forest Method for Clustering and Estimation of
the Number of Clusters [2.4953699842881605]
We focus on the concept of unimodality and propose a flexible cluster definition called locally unimodal cluster.
A locally unimodal cluster extends for as long as unimodality is locally preserved across pairs of subclusters of the data.
We propose the UniForCE method for locally unimodal clustering.
arXiv Detail & Related papers (2023-12-18T16:19:02Z) - Dynamically Weighted Federated k-Means [0.0]
Federated clustering enables multiple data sources to collaboratively cluster their data, maintaining decentralization and preserving privacy.
We introduce a novel federated clustering algorithm named Dynamically Weighted Federated k-means (DWF k-means) based on Lloyd's method for k-means clustering.
We conduct experiments on multiple datasets and data distribution settings to evaluate the performance of our algorithm in terms of clustering score, accuracy, and v-measure.
arXiv Detail & Related papers (2023-10-23T12:28:21Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
Clustering analysis plays an indispensable role in machine learning and data mining.
Deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks.
Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering.
arXiv Detail & Related papers (2022-10-09T02:31:32Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - DRBM-ClustNet: A Deep Restricted Boltzmann-Kohonen Architecture for Data
Clustering [0.0]
A Bayesian Deep Restricted Boltzmann-Kohonen architecture for data clustering termed as DRBM-ClustNet is proposed.
The processing of unlabeled data is done in three stages for efficient clustering of the non-linearly separable datasets.
The framework is evaluated based on clustering accuracy and ranked against other state-of-the-art clustering methods.
arXiv Detail & Related papers (2022-05-13T15:12:18Z) - Clustering Plotted Data by Image Segmentation [12.443102864446223]
Clustering algorithms are one of the main analytical methods to detect patterns in unlabeled data.
In this paper, we present a wholly different way of clustering points in 2-dimensional space, inspired by how humans cluster data.
Our approach, Visual Clustering, has several advantages over traditional clustering algorithms.
arXiv Detail & Related papers (2021-10-06T06:19:30Z) - Robust Trimmed k-means [70.88503833248159]
We propose Robust Trimmed k-means (RTKM) that simultaneously identifies outliers and clusters points.
We show RTKM performs competitively with other methods on single membership data with outliers and multi-membership data without outliers.
arXiv Detail & Related papers (2021-08-16T15:49:40Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.