Perfect, Pretty Good and Optimized Quantum State Transfer in Transmon qubit chains
- URL: http://arxiv.org/abs/2501.10580v1
- Date: Fri, 17 Jan 2025 22:16:41 GMT
- Title: Perfect, Pretty Good and Optimized Quantum State Transfer in Transmon qubit chains
- Authors: Pablo Serra, Alejandro Ferrón, Omar Osenda,
- Abstract summary: We study how changing the interaction strength between the chain qubits allows us to obtain perfect or pretty good state transfer.
For particular values of the interactions between the qubits, transmon chains are equivalent to generalized SSH chains.
We show that, in many cases, asking for fast transfer times results in chains with dimerized interactions that do not have topological states.
- Score: 44.99833362998488
- License:
- Abstract: Chains of transmon qubits are considered promising systems to implement different quantum information tasks. In particular as channels that perform high-quality quantum state transfer. We study how changing the interaction strength between the chain qubits allows us to obtain perfect or pretty good state transfer and present explicit analytic expressions for their transmission fidelity. For particular values of the interactions between the qubits, transmon chains are equivalent to generalized SSH chains and show the traditional traits observed in chains with topological states, localized states at the extremes of the chain, and eigenvalues that lie inside the spectral gap. Consequently, we study the quantum state transfer on chains with dimerized interactions, looking for chains with fast transfer times. We show that, in many cases, asking for fast transfer times results in chains with dimerized interactions that do not have topological states.
Related papers
- Some Aspects of Remote State Restoring in State Transfer Governed by XXZ-Hamiltonian [70.4277761365444]
We consider a spin system governed by the XXZ-armorian excitation number.
Restoring in spin chains with up to 20 nodes is studied.
We demonstrate the exponential increase of the state-transfer time with the spin chain length.
arXiv Detail & Related papers (2024-07-23T13:18:47Z) - Exact solution of a family of staggered Heisenberg chains with
conclusive pretty good quantum state transfer [68.8204255655161]
We work out the exact solutions in the one-excitation subspace.
We present numerical evidence that pretty good transmission is achieved by chains whose length is not a power of two.
arXiv Detail & Related papers (2022-06-28T18:31:09Z) - Quantum transfer of interacting qubits [0.0]
transfer of quantum information between different locations is key to many quantum information processing tasks.
We address the problem of transferring the state of n interacting qubits.
By employing tools from random matrix theory and using the formalism of quantum dynamical maps, we derive a general expression for the average and the variance of the fidelity of an arbitrary quantum state transfer protocol.
arXiv Detail & Related papers (2022-05-03T15:54:38Z) - Arbitrary entangled state transfer via a topological qubit chain [5.581919120140629]
We show that an arbitrary entangled state can be encoded in the corresponding edge states, and then adiabatically transferred from one end to the other of the chain.
Our approach is robust against both the qubit-qubit coupling disorder and the evolution time disorder.
For the concreteness of discussions, we assume that such a chain is constructed by an experimentally feasible superconducting qubit system.
arXiv Detail & Related papers (2021-11-10T07:57:27Z) - Pretty good quantum state transfer on isotropic and anisotropic
Heisenberg spin chains with tailored site dependent exchange couplings [68.8204255655161]
We consider chains with isotropic and anisotropic Heisenberg Hamiltonian with up to 100 spins.
We consider short transferred times, in particular shorter than those achievable with known time-dependent control schemes.
arXiv Detail & Related papers (2021-01-08T19:32:10Z) - Controlled quantum state transfer in $XX$ spin chains at the Quantum
Speed Limit [62.997667081978825]
In homogeneous chains it implies that taking information from one extreme of the chain to the other will take a time $O(N/2)$, where $N$ is the chain length.
We design control pulses that achieve near perfect population transfer between the extremes of the chain at times on the order of $N/2$, or larger.
arXiv Detail & Related papers (2020-05-15T23:10:19Z) - Almost exact state transfer in a spin chain via pulse control [0.0]
We propose an effective quantum control technique to realize almost exact state transfer (AEST) in a quantum spin chain.
The strategy is to add a leakage elimination operator (LEO) Hamiltonian to the evolution, which implements a sequence of pulse control acting on a perfect state transfer subspace.
arXiv Detail & Related papers (2020-05-04T08:12:47Z) - Long-range interaction in an open boundary-driven Heisenberg spin
lattice: A far-from-equilibrium transition to ballistic transport [62.997667081978825]
We study an open Heisenberg XXZ spin chain with long-range Ising-type interaction.
We find that the chain lengths for this transition are increasing with decreasing range of the Ising-type interactions between distant spins.
The transition can be explained by the suppression of ferromagnetic domains at the edges of the chain.
arXiv Detail & Related papers (2020-04-27T12:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.