Hierarchical LoG Bayesian Neural Network for Enhanced Aorta Segmentation
- URL: http://arxiv.org/abs/2501.10615v2
- Date: Sun, 26 Jan 2025 21:43:53 GMT
- Title: Hierarchical LoG Bayesian Neural Network for Enhanced Aorta Segmentation
- Authors: Delin An, Pan Du, Pengfei Gu, Jian-Xun Wang, Chaoli Wang,
- Abstract summary: This paper presents a novel approach for enhancing aorta segmentation using a Bayesian neural network-based hierarchical Laplacian of Gaussian (LoG) model.
Our model consists of a 3D U-Net stream and a hierarchical LoG stream, and the latter enhances blood vessel detection across varying scales.
Experimental results show that our model can accurately segment main and supra-aortic vessels, yielding at least a 3% gain in the Dice coefficient over state-of-the-art methods.
- Score: 8.014739073682966
- License:
- Abstract: Accurate segmentation of the aorta and its associated arch branches is crucial for diagnosing aortic diseases. While deep learning techniques have significantly improved aorta segmentation, they remain challenging due to the intricate multiscale structure and the complexity of the surrounding tissues. This paper presents a novel approach for enhancing aorta segmentation using a Bayesian neural network-based hierarchical Laplacian of Gaussian (LoG) model. Our model consists of a 3D U-Net stream and a hierarchical LoG stream: the former provides an initial aorta segmentation, and the latter enhances blood vessel detection across varying scales by learning suitable LoG kernels, enabling self-adaptive handling of different parts of the aorta vessels with significant scale differences. We employ a Bayesian method to parameterize the LoG stream and provide confidence intervals for the segmentation results, ensuring robustness and reliability of the prediction for vascular medical image analysts. Experimental results show that our model can accurately segment main and supra-aortic vessels, yielding at least a 3% gain in the Dice coefficient over state-of-the-art methods across multiple volumes drawn from two aorta datasets, and can provide reliable confidence intervals for different parts of the aorta. The code is available at https://github.com/adlsn/LoGBNet.
Related papers
- Robust semi-automatic vessel tracing in the human retinal image by an
instance segmentation neural network [1.324564545341267]
We present a novel approach for a robust semi-automatic vessel tracing algorithm on human fundus images by an instance segmentation neural network (InSegNN)
InSegNN separates and labels different vascular trees individually and therefore enable tracing each tree throughout its branching.
We have demonstrated tracing individual vessel trees from fundus images, and simultaneously retain the vessel hierarchy information.
arXiv Detail & Related papers (2024-02-15T16:25:28Z) - CIS-UNet: Multi-Class Segmentation of the Aorta in Computed Tomography
Angiography via Context-Aware Shifted Window Self-Attention [10.335899694123711]
We introduce Context Infused Swin-UNet (CIS-UNet), a deep learning model for aortic segmentation.
CIS-UNet adopts a hierarchical encoder-decoder structure comprising a CNN encoder, symmetric decoder, skip connections, and a novel Context-aware Shifted Window Self-Attention (CSW-SA) as the bottleneck block.
We trained our model on computed tomography (CT) scans from 44 patients and tested it on 15 patients. CIS-UNet outperformed the state-of-the-art SwinUNetR segmentation model, by achieving a superior mean Dice coefficient of 0.713 compared
arXiv Detail & Related papers (2024-01-23T19:17:20Z) - Multi-task learning for joint weakly-supervised segmentation and aortic
arch anomaly classification in fetal cardiac MRI [2.7962860265843563]
We present a framework for automated fetal vessel segmentation from 3D black blood T2w MRI and anomaly classification.
We target 11 cardiac vessels and three distinct aortic arch anomalies, including double aortic arch, right aortic arch, and suspected coarctation of the aorta.
Our results showcase that our proposed training strategy significantly outperforms label propagation and a network trained exclusively on propagated labels.
arXiv Detail & Related papers (2023-11-13T10:54:53Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
We present an image enhancement technique based on the morphological preprocessing coupled with a scaled U-net architecture.
A significant improvement as compared to the other algorithms in the domain, in terms of the area under ROC curve (>0.9762) and classification accuracy (>95.47%) are evident from the results.
arXiv Detail & Related papers (2022-03-18T15:26:05Z) - Hierarchical Deep Network with Uncertainty-aware Semi-supervised
Learning for Vessel Segmentation [58.45470500617549]
We propose a hierarchical deep network where an attention mechanism localizes the low-contrast capillary regions guided by the whole vessels.
The proposed method achieves the state-of-the-art performance in the benchmarks of both retinal artery/vein segmentation in fundus images and liver portal/hepatic vessel segmentation in CT images.
arXiv Detail & Related papers (2021-05-31T06:55:43Z) - Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein
Segmentation in CT [45.93021999366973]
Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging.
We present a CNNs-based method for accurate airway and artery-vein segmentation in non-contrast computed tomography.
It enjoys superior sensitivity to tenuous peripheral bronchioles, arterioles, and venules.
arXiv Detail & Related papers (2020-12-10T15:56:08Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.