Precision Adaptive Imputation Network : An Unified Technique for Mixed Datasets
- URL: http://arxiv.org/abs/2501.10667v1
- Date: Sat, 18 Jan 2025 06:22:27 GMT
- Title: Precision Adaptive Imputation Network : An Unified Technique for Mixed Datasets
- Authors: Harsh Joshi, Rajeshwari Mistri, Manasi Mali, Nachiket Kapure, Parul Kumari,
- Abstract summary: This study introduces the Precision Adaptive Imputation Network (PAIN), a novel algorithm designed to enhance data reconstruction.
PAIN employs a tri-step process that integrates statistical methods, random forests, and autoencoders, ensuring balanced accuracy and efficiency in imputation.
The findings highlight PAIN's superior ability to preserve data distributions and maintain analytical integrity, particularly in complex scenarios where missingness is not completely at random.
- Score: 0.0
- License:
- Abstract: The challenge of missing data remains a significant obstacle across various scientific domains, necessitating the development of advanced imputation techniques that can effectively address complex missingness patterns. This study introduces the Precision Adaptive Imputation Network (PAIN), a novel algorithm designed to enhance data reconstruction by dynamically adapting to diverse data types, distributions, and missingness mechanisms. PAIN employs a tri-step process that integrates statistical methods, random forests, and autoencoders, ensuring balanced accuracy and efficiency in imputation. Through rigorous evaluation across multiple datasets, including those characterized by high-dimensional and correlated features, PAIN consistently outperforms traditional imputation methods, such as mean and median imputation, as well as other advanced techniques like MissForest. The findings highlight PAIN's superior ability to preserve data distributions and maintain analytical integrity, particularly in complex scenarios where missingness is not completely at random. This research not only contributes to a deeper understanding of missing data reconstruction but also provides a critical framework for future methodological innovations in data science and machine learning, paving the way for more effective handling of mixed-type datasets in real-world applications.
Related papers
- Discovering symbolic expressions with parallelized tree search [59.92040079807524]
Symbolic regression plays a crucial role in scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data.
Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity.
We introduce a parallelized tree search (PTS) model to efficiently distill generic mathematical expressions from limited data.
arXiv Detail & Related papers (2024-07-05T10:41:15Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - Machine Learning Based Missing Values Imputation in Categorical Datasets [2.5611256859404983]
This research looked into the use of machine learning algorithms to fill in the gaps in categorical datasets.
The emphasis was on ensemble models constructed using the Error Correction Output Codes framework.
Deep learning for missing data imputation has obstacles despite these encouraging results, including the requirement for large amounts of labeled data.
arXiv Detail & Related papers (2023-06-10T03:29:48Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Multiple Imputation via Generative Adversarial Network for
High-dimensional Blockwise Missing Value Problems [6.123324869194195]
We propose Multiple Imputation via Generative Adversarial Network (MI-GAN), a deep learning-based (in specific, a GAN-based) multiple imputation method.
MI-GAN shows strong performance matching existing state-of-the-art imputation methods on high-dimensional datasets.
In particular, MI-GAN significantly outperforms other imputation methods in the sense of statistical inference and computational speed.
arXiv Detail & Related papers (2021-12-21T20:19:37Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
We propose a causally-aware imputation algorithm (MIRACLE) for missing data.
MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism.
We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation.
arXiv Detail & Related papers (2021-11-04T22:38:18Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Categorical EHR Imputation with Generative Adversarial Nets [11.171712535005357]
We propose a simple and yet effective approach that is based on previous work on GANs for data imputation.
We show that our imputation approach largely improves the prediction accuracy, compared to more traditional data imputation approaches.
arXiv Detail & Related papers (2021-08-03T18:50:26Z) - Handling Non-ignorably Missing Features in Electronic Health Records
Data Using Importance-Weighted Autoencoders [8.518166245293703]
We propose a novel extension of VAEs called Importance-Weighted Autoencoders (IWAEs) to flexibly handle Missing Not At Random patterns in the Physionet data.
Our proposed method models the missingness mechanism using an embedded neural network, eliminating the need to specify the exact form of the missingness mechanism a priori.
arXiv Detail & Related papers (2021-01-18T22:53:29Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.