Distributionally Robust Policy Evaluation and Learning for Continuous Treatment with Observational Data
- URL: http://arxiv.org/abs/2501.10693v1
- Date: Sat, 18 Jan 2025 08:12:56 GMT
- Title: Distributionally Robust Policy Evaluation and Learning for Continuous Treatment with Observational Data
- Authors: Cheuk Hang Leung, Yiyan Huang, Yijun Li, Qi Wu,
- Abstract summary: Using offline observational data for policy evaluation and learning allows decision-makers to evaluate and learn a policy that connects characteristics and interventions.<n>Most existing literature has focused on either discrete treatment spaces or assumed no difference in the distributions between the policy-learning and policy-deployed environments.<n>This paper focuses on developing a distributionally robust policy under a continuous treatment setting.
- Score: 20.125760566665704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using offline observational data for policy evaluation and learning allows decision-makers to evaluate and learn a policy that connects characteristics and interventions. Most existing literature has focused on either discrete treatment spaces or assumed no difference in the distributions between the policy-learning and policy-deployed environments. These restrict applications in many real-world scenarios where distribution shifts are present with continuous treatment. To overcome these challenges, this paper focuses on developing a distributionally robust policy under a continuous treatment setting. The proposed distributionally robust estimators are established using the Inverse Probability Weighting (IPW) method extended from the discrete one for policy evaluation and learning under continuous treatments. Specifically, we introduce a kernel function into the proposed IPW estimator to mitigate the exclusion of observations that can occur in the standard IPW method to continuous treatments. We then provide finite-sample analysis that guarantees the convergence of the proposed distributionally robust policy evaluation and learning estimators. The comprehensive experiments further verify the effectiveness of our approach when distribution shifts are present.
Related papers
- Reinforcement Learning with Continuous Actions Under Unmeasured Confounding [14.510042451844766]
This paper addresses the challenge of offline policy learning in reinforcement learning with continuous action spaces.
We develop a minimax estimator and introduce a policy-gradient-based algorithm to identify the in-class optimal policy.
We provide theoretical results regarding the consistency, finite-sample error bound, and regret bound of the resulting optimal policy.
arXiv Detail & Related papers (2025-05-01T04:55:29Z) - Conformal Counterfactual Inference under Hidden Confounding [19.190396053530417]
Predicting potential outcomes along with its uncertainty in a counterfactual world poses the foundamental challenge in causal inference.
Existing methods that construct confidence intervals for counterfactuals either rely on the assumption of strong ignorability.
We propose a novel approach based on transductive weighted conformal prediction, which provides confidence intervals for counterfactual outcomes with marginal converage guarantees.
arXiv Detail & Related papers (2024-05-20T21:43:43Z) - Quantile Off-Policy Evaluation via Deep Conditional Generative Learning [21.448553360543478]
Off-Policy evaluation (OPE) is concerned with evaluating a new target policy using offline data generated by a potentially different behavior policy.
We propose a doubly-robust inference procedure for quantile OPE in sequential decision making.
We demonstrate the advantages of this proposed estimator through both simulations and a real-world dataset from a short-video platform.
arXiv Detail & Related papers (2022-12-29T22:01:43Z) - Proximal Reinforcement Learning: Efficient Off-Policy Evaluation in
Partially Observed Markov Decision Processes [65.91730154730905]
In applications of offline reinforcement learning to observational data, such as in healthcare or education, a general concern is that observed actions might be affected by unobserved factors.
Here we tackle this by considering off-policy evaluation in a partially observed Markov decision process (POMDP)
We extend the framework of proximal causal inference to our POMDP setting, providing a variety of settings where identification is made possible.
arXiv Detail & Related papers (2021-10-28T17:46:14Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - Offline Policy Selection under Uncertainty [113.57441913299868]
We consider offline policy selection as learning preferences over a set of policy prospects given a fixed experience dataset.
Access to the full distribution over one's belief of the policy value enables more flexible selection algorithms under a wider range of downstream evaluation metrics.
We show how BayesDICE may be used to rank policies with respect to any arbitrary downstream policy selection metric.
arXiv Detail & Related papers (2020-12-12T23:09:21Z) - Reliable Off-policy Evaluation for Reinforcement Learning [53.486680020852724]
In a sequential decision-making problem, off-policy evaluation estimates the expected cumulative reward of a target policy.
We propose a novel framework that provides robust and optimistic cumulative reward estimates using one or multiple logged data.
arXiv Detail & Related papers (2020-11-08T23:16:19Z) - Distributionally Robust Batch Contextual Bandits [20.667213458836734]
Policy learning using historical observational data is an important problem that has found widespread applications.
Existing literature rests on the crucial assumption that the future environment where the learned policy will be deployed is the same as the past environment.
In this paper, we lift this assumption and aim to learn a distributionally robust policy with incomplete observational data.
arXiv Detail & Related papers (2020-06-10T03:11:40Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most successful policy gradient approaches in deep reinforcement learning (RL)
We propose a new algorithm which stabilizes the policy improvement through a proximity term that constrains the discounted state-action visitation distribution induced by consecutive policies to be close to one another.
Our proposed method can have a beneficial effect on stability and improve final performance in benchmark high-dimensional control tasks.
arXiv Detail & Related papers (2020-03-09T13:05:47Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.