Decoupling Appearance Variations with 3D Consistent Features in Gaussian Splatting
- URL: http://arxiv.org/abs/2501.10788v1
- Date: Sat, 18 Jan 2025 14:55:58 GMT
- Title: Decoupling Appearance Variations with 3D Consistent Features in Gaussian Splatting
- Authors: Jiaqi Lin, Zhihao Li, Binxiao Huang, Xiao Tang, Jianzhuang Liu, Shiyong Liu, Xiaofei Wu, Fenglong Song, Wenming Yang,
- Abstract summary: We propose DAVIGS, a method that decouples appearance variations in a plug-and-play manner.
By transforming the rendering results at the image level instead of the Gaussian level, our approach can model appearance variations with minimal optimization time and memory overhead.
We validate our method on several appearance-variant scenes, and demonstrate that it achieves state-of-the-art rendering quality with minimal training time and memory usage.
- Score: 50.98884579463359
- License:
- Abstract: Gaussian Splatting has emerged as a prominent 3D representation in novel view synthesis, but it still suffers from appearance variations, which are caused by various factors, such as modern camera ISPs, different time of day, weather conditions, and local light changes. These variations can lead to floaters and color distortions in the rendered images/videos. Recent appearance modeling approaches in Gaussian Splatting are either tightly coupled with the rendering process, hindering real-time rendering, or they only account for mild global variations, performing poorly in scenes with local light changes. In this paper, we propose DAVIGS, a method that decouples appearance variations in a plug-and-play and efficient manner. By transforming the rendering results at the image level instead of the Gaussian level, our approach can model appearance variations with minimal optimization time and memory overhead. Furthermore, our method gathers appearance-related information in 3D space to transform the rendered images, thus building 3D consistency across views implicitly. We validate our method on several appearance-variant scenes, and demonstrate that it achieves state-of-the-art rendering quality with minimal training time and memory usage, without compromising rendering speeds. Additionally, it provides performance improvements for different Gaussian Splatting baselines in a plug-and-play manner.
Related papers
- WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections [8.261637198675151]
Novel View Synthesis (NVS) from unconstrained photo collections is challenging in computer graphics.
We propose an efficient point-based differentiable rendering framework for scene reconstruction from photo collections.
Our approach outperforms existing approaches on the rendering quality of novel view and appearance synthesis with high converge and rendering speed.
arXiv Detail & Related papers (2024-06-04T15:17:37Z) - SWAG: Splatting in the Wild images with Appearance-conditioned Gaussians [2.2369578015657954]
Implicit neural representation methods have shown impressive advancements in learning 3D scenes from unstructured in-the-wild photo collections.
We introduce a new mechanism to train transient Gaussians to handle the presence of scene occluders in an unsupervised manner.
arXiv Detail & Related papers (2024-03-15T16:00:04Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - FLARE: Fast Learning of Animatable and Relightable Mesh Avatars [64.48254296523977]
Our goal is to efficiently learn personalized animatable 3D head avatars from videos that are geometrically accurate, realistic, relightable, and compatible with current rendering systems.
We introduce FLARE, a technique that enables the creation of animatable and relightable avatars from a single monocular video.
arXiv Detail & Related papers (2023-10-26T16:13:00Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
Implicit neural representation has paved the way for new approaches to dynamic scene reconstruction and rendering.
We propose a deformable 3D Gaussians Splatting method that reconstructs scenes using 3D Gaussians and learns them in canonical space.
Through a differential Gaussianizer, the deformable 3D Gaussians not only achieve higher rendering quality but also real-time rendering speed.
arXiv Detail & Related papers (2023-09-22T16:04:02Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
We present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives.
Unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images.
We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points.
arXiv Detail & Related papers (2023-07-11T17:58:31Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.