A comprehensive survey on RPL routing-based attacks, defences and future directions in Internet of Things
- URL: http://arxiv.org/abs/2501.10817v1
- Date: Sat, 18 Jan 2025 16:30:00 GMT
- Title: A comprehensive survey on RPL routing-based attacks, defences and future directions in Internet of Things
- Authors: Anil K Prajapati, Emmanuel S Pilli, Ramesh B Battula, Vijay Varadharajan, Abhishek Verma, R C Joshi,
- Abstract summary: Internet of Things (IoT) devices are vulnerable to various attacks on RPL-based routing.
This survey provides an in depth study of existing RPL-based attacks and defense published from year 2011 to 2024.
evaluation tools such as testbeds and simulators for RPL-based attack and defense are discussed.
- Score: 2.2254540765657755
- License:
- Abstract: The Internet of Things (IoT) is a network of digital devices like sensors, processors, embedded and communication devices that can connect to and exchange data with other devices and systems over the internet. IoT devices have limitations on power, memory, and computational resources. Researchers have developed the IPv6 Over Low-power Wireless Personal Area Network (6LoWPAN) protocols to provide wireless connectivity among these devices while overcoming the constraints on resources. 6LoWPAN has been approved subsequently by the Internet Engineering Task Force (IETF). The IETF Routing Over Low-power and Lossy Networks (ROLL) standardized the Routing Protocol for LLNs known as RPL (IETF RFC 6550), which is part of the 6LoWPAN stack. However, IoT devices are vulnerable to various attacks on RPL-based routing. This survey provides an in depth study of existing RPL-based attacks and defense published from year 2011 to 2024 from highly reputed journals and conferences. By thematic analysis of existing routing attacks on RPL, we developed a novel attack taxonomy which focuses on the nature of routing attacks and classifies them into 12 major categories. Subsequently, the impact of each attack on the network is analyzed and discussed real life scenarios of these attacks. Another contribution of this survey proposed a novel taxonomy for classification of defense mechanisms into 8 major categories against routing attacks based on type of defense strategy. The detailed analysis of each defense mechanism with real life applicability is explained. Furthermore, evaluation tools such as testbeds and simulators for RPL-based attack and defense are discussed and critically analyzed in terms of real world applicability. Finally, open research challenges are presented on the basis of research gaps of existing literature along with research directions for practitioners and researchers.
Related papers
- Learning in Multiple Spaces: Few-Shot Network Attack Detection with Metric-Fused Prototypical Networks [47.18575262588692]
We propose a novel Multi-Space Prototypical Learning framework tailored for few-shot attack detection.
By leveraging Polyak-averaged prototype generation, the framework stabilizes the learning process and effectively adapts to rare and zero-day attacks.
Experimental results on benchmark datasets demonstrate that MSPL outperforms traditional approaches in detecting low-profile and novel attack types.
arXiv Detail & Related papers (2024-12-28T00:09:46Z) - FedMADE: Robust Federated Learning for Intrusion Detection in IoT Networks Using a Dynamic Aggregation Method [7.842334649864372]
Internet of Things (IoT) devices across multiple sectors has escalated serious network security concerns.
Traditional Machine Learning (ML)-based Intrusion Detection Systems (IDSs) for cyber-attack classification require data transmission from IoT devices to a centralized server for traffic analysis, raising severe privacy concerns.
We introduce FedMADE, a novel dynamic aggregation method, which clusters devices by their traffic patterns and aggregates local models based on their contributions towards overall performance.
arXiv Detail & Related papers (2024-08-13T18:42:34Z) - Deep Reinforcement Learning for Intrusion Detection in IoT: A Survey [0.23408308015481666]
State-of-the-art DRL-based IDS methods have been classified into five categories including wireless sensor network (WSN), deep Q-network (DQN), healthcare, hybrid, and other techniques.
The most crucial performance metrics, namely accuracy, recall, precision, false negative rate (FNR), false positive rate (FPR), and F-measure, are detailed.
arXiv Detail & Related papers (2024-05-30T13:19:23Z) - A Lightweight Security Solution for Mitigation of Hatchetman Attack in RPL-based 6LoWPAN [0.24578723416255752]
The Internet of Things (IoT) has a significant rise in industries, and we live in the era of Industry 4.0.
The conventional routing method is ineffective in networks with limited resource devices, lossy links, and slow data rates.
This paper shows significant degradation in terms of network performance when an attacker exploits the Non-Storing feature of the Routing Protocol for Low Power and Lossy Networks (RPL)
arXiv Detail & Related papers (2024-04-02T06:48:33Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - Physical Side-Channel Attacks on Embedded Neural Networks: A Survey [0.32634122554913997]
Neural Networks (NN) are expected to become ubiquitous in IoT systems by transforming all sorts of real-world applications.
embedded NN implementations are vulnerable to Side-Channel Analysis (SCA) attacks.
This paper surveys state-of-the-art physical SCA attacks relative to the implementation of embedded NNs on micro-controllers and FPGAs.
arXiv Detail & Related papers (2021-10-21T17:18:52Z) - Network and Physical Layer Attacks and countermeasures to AI-Enabled 6G
O-RAN [1.7811776494967646]
This paper examines the security implications of AI-driven 6G radio access networks (RANs)
The Open RAN (O-RAN) describes an industry-driven open architecture and interfaces for building next generation RANs with AI control.
arXiv Detail & Related papers (2021-06-01T16:36:37Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
We show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network.
We benchmark the performance of these attacks and show that with a small perturbation in the input of the neural network (NN), the white-box attacks can result in infeasible solutions up to 86%.
arXiv Detail & Related papers (2021-01-28T16:18:19Z) - Challenges and Countermeasures for Adversarial Attacks on Deep
Reinforcement Learning [48.49658986576776]
Deep Reinforcement Learning (DRL) has numerous applications in the real world thanks to its outstanding ability in adapting to the surrounding environments.
Despite its great advantages, DRL is susceptible to adversarial attacks, which precludes its use in real-life critical systems and applications.
This paper presents emerging attacks in DRL-based systems and the potential countermeasures to defend against these attacks.
arXiv Detail & Related papers (2020-01-27T10:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.