OpenEarthMap-SAR: A Benchmark Synthetic Aperture Radar Dataset for Global High-Resolution Land Cover Mapping
- URL: http://arxiv.org/abs/2501.10891v2
- Date: Wed, 22 Jan 2025 02:53:36 GMT
- Title: OpenEarthMap-SAR: A Benchmark Synthetic Aperture Radar Dataset for Global High-Resolution Land Cover Mapping
- Authors: Junshi Xia, Hongruixuan Chen, Clifford Broni-Bediako, Yimin Wei, Jian Song, Naoto Yokoya,
- Abstract summary: We introduce OpenEarthMap-SAR, a benchmark SAR dataset for global high-resolution land cover mapping.
OpenEarthMap-SAR consists of 1.5 million segments of 5033 aerial and satellite images with the size of 1024$times$1024 pixels, covering 35 regions from Japan, France, and the USA.
We evaluate the performance of state-of-the-art methods for semantic segmentation and present challenging problem settings suitable for further technical development.
- Score: 16.387666608029882
- License:
- Abstract: High-resolution land cover mapping plays a crucial role in addressing a wide range of global challenges, including urban planning, environmental monitoring, disaster response, and sustainable development. However, creating accurate, large-scale land cover datasets remains a significant challenge due to the inherent complexities of geospatial data, such as diverse terrain, varying sensor modalities, and atmospheric conditions. Synthetic Aperture Radar (SAR) imagery, with its ability to penetrate clouds and capture data in all-weather, day-and-night conditions, offers unique advantages for land cover mapping. Despite these strengths, the lack of benchmark datasets tailored for SAR imagery has limited the development of robust models specifically designed for this data modality. To bridge this gap and facilitate advancements in SAR-based geospatial analysis, we introduce OpenEarthMap-SAR, a benchmark SAR dataset, for global high-resolution land cover mapping. OpenEarthMap-SAR consists of 1.5 million segments of 5033 aerial and satellite images with the size of 1024$\times$1024 pixels, covering 35 regions from Japan, France, and the USA, with partially manually annotated and fully pseudo 8-class land cover labels at a ground sampling distance of 0.15--0.5 m. We evaluated the performance of state-of-the-art methods for semantic segmentation and present challenging problem settings suitable for further technical development. The dataset also serves the official dataset for IEEE GRSS Data Fusion Contest Track I. The dataset has been made publicly available at https://zenodo.org/records/14622048.
Related papers
- Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework [59.42946541163632]
We introduce a comprehensive geolocation framework with three key components.
GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric.
We demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
arXiv Detail & Related papers (2025-02-19T14:21:25Z) - EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
This paper presents a dataset specifically designed for self-supervision on remote sensing data, intended to enhance deep learning applications on Earth monitoring tasks.
The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic.
Accompanying the dataset is EarthMAE, a tailored Masked Autoencoder developed to tackle the distinct challenges of remote sensing data.
arXiv Detail & Related papers (2025-01-14T13:42:22Z) - AGBD: A Global-scale Biomass Dataset [18.976975819550173]
Existing datasets for Above Ground Biomass estimation from satellite imagery are limited.
This dataset combines AGB reference data from the GEDI mission with data from Sentinel-2 and PALSAR-2 imagery.
It includes pre-processed high-level features such as a dense canopy height map, an elevation map, and a land-cover classification map.
It can be easily accessed using a single line of code, offering a solid basis for efforts towards global AGB estimation.
arXiv Detail & Related papers (2024-06-07T13:34:17Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - FLAIR: a Country-Scale Land Cover Semantic Segmentation Dataset From
Multi-Source Optical Imagery [4.9687851703152806]
We introduce the French Land cover from Aerospace ImageRy (FLAIR), an extensive dataset from the French National Institute of Geographical and Forest Information (IGN)
FLAIR contains high-resolution aerial imagery with a ground sample distance of 20 cm and over 20 billion individually labeled pixels for precise land-cover classification.
The dataset also integrates temporal and spectral data from optical satellite time series.
arXiv Detail & Related papers (2023-10-20T07:55:12Z) - Diffusion Models for Interferometric Satellite Aperture Radar [73.01013149014865]
Probabilistic Diffusion Models (PDMs) have recently emerged as a very promising class of generative models.
Here, we leverage PDMs to generate several radar-based satellite image datasets.
We show that PDMs succeed in generating images with complex and realistic structures, but that sampling time remains an issue.
arXiv Detail & Related papers (2023-08-31T16:26:17Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - OpenEarthMap: A Benchmark Dataset for Global High-Resolution Land Cover
Mapping [15.419052489797775]
OpenEarthMap is a benchmark dataset for global high-resolution land cover mapping.
It consists of 2.2 million segments of 5000 aerial and satellite images covering 97 regions from 44 countries across 6 continents.
arXiv Detail & Related papers (2022-10-19T17:20:16Z) - Enabling Country-Scale Land Cover Mapping with Meter-Resolution
Satellite Imagery [42.70832378336697]
High-resolution satellite images can provide abundant, detailed spatial information for land cover classification.
Few studies have applied high-resolution images to land cover mapping in detailed categories at large scale.
We present a large-scale land cover dataset, Five-Billion-Pixels. It contains more than 5 billion labeled pixels of 150 high-resolution Gaofen-2 (4 m) satellite images.
arXiv Detail & Related papers (2022-09-01T21:00:23Z) - Hephaestus: A large scale multitask dataset towards InSAR understanding [1.8350044465969417]
In this work, we put the effort to create and make available the first of its kind, manually annotated InSAR dataset.
The dataset consists of 19,919 individual Sentinel-1 interferograms acquired over 44 different volcanoes globally, which are split into 216,106 InSAR patches.
It is designed to address different computer vision problems, including volcano state classification, semantic segmentation of ground deformation, detection and classification of atmospheric signals.
arXiv Detail & Related papers (2022-04-20T12:58:18Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
We present an urban-scale photogrammetric point cloud dataset with nearly three billion richly annotated points.
Our dataset consists of large areas from three UK cities, covering about 7.6 km2 of the city landscape.
We evaluate the performance of state-of-the-art algorithms on our dataset and provide a comprehensive analysis of the results.
arXiv Detail & Related papers (2020-09-07T14:47:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.