Enhancing Neural Spoken Language Recognition: An Exploration with Multilingual Datasets
- URL: http://arxiv.org/abs/2501.11065v1
- Date: Sun, 19 Jan 2025 14:49:43 GMT
- Title: Enhancing Neural Spoken Language Recognition: An Exploration with Multilingual Datasets
- Authors: Or Haim Anidjar, Roi Yozevitch,
- Abstract summary: This research advances a spoken language recognition system, moving beyond traditional feature vector-based models.
We utilize a broad dataset range from Common-Voice, targeting ten languages across Indo-European, Semitic, and East Asian families.
We introduce additional layers and restructured these networks into a funnel shape, enhancing their ability to process complex linguistic patterns.
- Score: 1.4732811715354455
- License:
- Abstract: In this research, we advanced a spoken language recognition system, moving beyond traditional feature vector-based models. Our improvements focused on effectively capturing language characteristics over extended periods using a specialized pooling layer. We utilized a broad dataset range from Common-Voice, targeting ten languages across Indo-European, Semitic, and East Asian families. The major innovation involved optimizing the architecture of Time Delay Neural Networks. We introduced additional layers and restructured these networks into a funnel shape, enhancing their ability to process complex linguistic patterns. A rigorous grid search determined the optimal settings for these networks, significantly boosting their efficiency in language pattern recognition from audio samples. The model underwent extensive training, including a phase with augmented data, to refine its capabilities. The culmination of these efforts is a highly accurate system, achieving a 97\% accuracy rate in language recognition. This advancement represents a notable contribution to artificial intelligence, specifically in improving the accuracy and efficiency of language processing systems, a critical aspect in the engineering of advanced speech recognition technologies.
Related papers
- Enhancing Multilingual ASR for Unseen Languages via Language Embedding Modeling [50.62091603179394]
Whisper, one of the most advanced ASR models, handles 99 languages effectively.
However, Whisper struggles with unseen languages, those not included in its pre-training.
We propose methods that exploit these relationships to enhance ASR performance on unseen languages.
arXiv Detail & Related papers (2024-12-21T04:05:43Z) - Improving Speech Emotion Recognition in Under-Resourced Languages via Speech-to-Speech Translation with Bootstrapping Data Selection [49.27067541740956]
Speech Emotion Recognition (SER) is a crucial component in developing general-purpose AI agents capable of natural human-computer interaction.
Building robust multilingual SER systems remains challenging due to the scarcity of labeled data in languages other than English and Chinese.
We propose an approach to enhance SER performance in low SER resource languages by leveraging data from high-resource languages.
arXiv Detail & Related papers (2024-09-17T08:36:45Z) - Sign language recognition based on deep learning and low-cost handcrafted descriptors [0.0]
It is important to consider as many linguistic parameters as possible in gesture execution to avoid ambiguity between words.
It is essential to ensure that the chosen technology is realistic, avoiding expensive, intrusive, or low-mobility sensors.
We propose an efficient sign language recognition system that utilizes low-cost sensors and techniques.
arXiv Detail & Related papers (2024-08-14T00:56:51Z) - Improving Multilingual Neural Machine Translation by Utilizing Semantic and Linguistic Features [18.76505158652759]
We propose to exploit both semantic and linguistic features between multiple languages to enhance multilingual translation.
On the encoder side, we introduce a disentangling learning task that aligns encoder representations by disentangling semantic and linguistic features.
On the decoder side, we leverage a linguistic encoder to integrate low-level linguistic features to assist in the target language generation.
arXiv Detail & Related papers (2024-08-02T17:10:12Z) - Integrating Knowledge in End-to-End Automatic Speech Recognition for
Mandarin-English Code-Switching [41.88097793717185]
Code-Switching (CS) is a common linguistic phenomenon in multilingual communities.
This paper presents our investigations on end-to-end speech recognition for Mandarin-English CS speech.
arXiv Detail & Related papers (2021-12-19T17:31:15Z) - Towards Zero-shot Language Modeling [90.80124496312274]
We construct a neural model that is inductively biased towards learning human languages.
We infer this distribution from a sample of typologically diverse training languages.
We harness additional language-specific side information as distant supervision for held-out languages.
arXiv Detail & Related papers (2021-08-06T23:49:18Z) - Reinforced Iterative Knowledge Distillation for Cross-Lingual Named
Entity Recognition [54.92161571089808]
Cross-lingual NER transfers knowledge from rich-resource language to languages with low resources.
Existing cross-lingual NER methods do not make good use of rich unlabeled data in target languages.
We develop a novel approach based on the ideas of semi-supervised learning and reinforcement learning.
arXiv Detail & Related papers (2021-06-01T05:46:22Z) - Acoustics Based Intent Recognition Using Discovered Phonetic Units for
Low Resource Languages [51.0542215642794]
We propose a novel acoustics based intent recognition system that uses discovered phonetic units for intent classification.
We present results for two languages families - Indic languages and Romance languages, for two different intent recognition tasks.
arXiv Detail & Related papers (2020-11-07T00:35:31Z) - Meta-Transfer Learning for Code-Switched Speech Recognition [72.84247387728999]
We propose a new learning method, meta-transfer learning, to transfer learn on a code-switched speech recognition system in a low-resource setting.
Our model learns to recognize individual languages, and transfer them so as to better recognize mixed-language speech by conditioning the optimization on the code-switching data.
arXiv Detail & Related papers (2020-04-29T14:27:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.