How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks?
- URL: http://arxiv.org/abs/2501.11253v1
- Date: Mon, 20 Jan 2025 03:34:49 GMT
- Title: How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks?
- Authors: Wenxuan Li, Alan Yuille, Zongwei Zhou,
- Abstract summary: We develop a suite of models that are pre-trained on our AbdomenAtlas 1.1 for transfer learning.
Our preliminary analyses indicate that the model trained only with 21 CT volumes, 672 masks, and 40 GPU hours has a transfer learning ability similar to the model trained with 5,050 (unlabeled) CT volumes and 1,152 GPU hours.
- Score: 8.82276658079814
- License:
- Abstract: The pre-training and fine-tuning paradigm has become prominent in transfer learning. For example, if the model is pre-trained on ImageNet and then fine-tuned to PASCAL, it can significantly outperform that trained on PASCAL from scratch. While ImageNet pre-training has shown enormous success, it is formed in 2D, and the learned features are for classification tasks; when transferring to more diverse tasks, like 3D image segmentation, its performance is inevitably compromised due to the deviation from the original ImageNet context. A significant challenge lies in the lack of large, annotated 3D datasets rivaling the scale of ImageNet for model pre-training. To overcome this challenge, we make two contributions. Firstly, we construct AbdomenAtlas 1.1 that comprises 9,262 three-dimensional computed tomography (CT) volumes with high-quality, per-voxel annotations of 25 anatomical structures and pseudo annotations of seven tumor types. Secondly, we develop a suite of models that are pre-trained on our AbdomenAtlas 1.1 for transfer learning. Our preliminary analyses indicate that the model trained only with 21 CT volumes, 672 masks, and 40 GPU hours has a transfer learning ability similar to the model trained with 5,050 (unlabeled) CT volumes and 1,152 GPU hours. More importantly, the transfer learning ability of supervised models can further scale up with larger annotated datasets, achieving significantly better performance than preexisting pre-trained models, irrespective of their pre-training methodologies or data sources. We hope this study can facilitate collective efforts in constructing larger 3D medical datasets and more releases of supervised pre-trained models.
Related papers
- Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
This study proposes a simple approach of adapting 2D networks with an intermediate feature representation for processing 3D images.
We show on all 3D MedMNIST datasets as benchmark and two real-world datasets consisting of several hundred high-resolution CT or MRI scans that our approach performs on par with existing methods.
arXiv Detail & Related papers (2023-07-13T08:27:09Z) - DINOv2: Learning Robust Visual Features without Supervision [75.42921276202522]
This work shows that existing pretraining methods, especially self-supervised methods, can produce such features if trained on enough curated data from diverse sources.
Most of the technical contributions aim at accelerating and stabilizing the training at scale.
In terms of data, we propose an automatic pipeline to build a dedicated, diverse, and curated image dataset instead of uncurated data, as typically done in the self-supervised literature.
arXiv Detail & Related papers (2023-04-14T15:12:19Z) - Video Pretraining Advances 3D Deep Learning on Chest CT Tasks [63.879848037679224]
Pretraining on large natural image classification datasets has aided model development on data-scarce 2D medical tasks.
These 2D models have been surpassed by 3D models on 3D computer vision benchmarks.
We show video pretraining for 3D models can enable higher performance on smaller datasets for 3D medical tasks.
arXiv Detail & Related papers (2023-04-02T14:46:58Z) - HoloDiffusion: Training a 3D Diffusion Model using 2D Images [71.1144397510333]
We introduce a new diffusion setup that can be trained, end-to-end, with only posed 2D images for supervision.
We show that our diffusion models are scalable, train robustly, and are competitive in terms of sample quality and fidelity to existing approaches for 3D generative modeling.
arXiv Detail & Related papers (2023-03-29T07:35:56Z) - The effectiveness of MAE pre-pretraining for billion-scale pretraining [65.98338857597935]
We introduce an additional pre-pretraining stage that is simple and uses the self-supervised MAE technique to initialize the model.
We measure the effectiveness of pre-pretraining on 10 different visual recognition tasks spanning image classification, video recognition, object detection, low-shot classification and zero-shot recognition.
arXiv Detail & Related papers (2023-03-23T17:56:12Z) - Generative Transfer Learning: Covid-19 Classification with a few Chest
X-ray Images [0.0]
Deep learning models can expedite interpretation and alleviate the work of human experts.
Deep Transfer Learning addresses this problem by using a pretrained model in the public domain.
We present 1 a simpler generative source model, pretrained on a single but related concept, can perform as effectively as existing larger pretrained models.
arXiv Detail & Related papers (2022-08-10T12:37:52Z) - P2P: Tuning Pre-trained Image Models for Point Cloud Analysis with
Point-to-Pixel Prompting [94.11915008006483]
We propose a novel Point-to-Pixel prompting for point cloud analysis.
Our method attains 89.3% accuracy on the hardest setting of ScanObjectNN.
Our framework also exhibits very competitive performance on ModelNet classification and ShapeNet Part Code.
arXiv Detail & Related papers (2022-08-04T17:59:03Z) - On Data Scaling in Masked Image Modeling [36.00347416479826]
Masked image modeling (MIM) is suspected to be unable to benefit from larger data.
Data scales ranging from 10% of ImageNet-1K to full ImageNet-22K, model sizes ranging from 49 million to 1 billion, and training lengths ranging from 125K iterations to 500K iterations.
validation loss in pre-training is a good indicator to measure how well the model performs for fine-tuning on multiple tasks.
arXiv Detail & Related papers (2022-06-09T17:58:24Z) - Models Genesis [10.929445262793116]
Transfer learning from natural images to medical images has been established as one of the most practical paradigms in deep learning for medical image analysis.
To overcome this limitation, we have built a set of models, called Generic Autodidactic Models, nicknamed Models Genesis.
Our experiments demonstrate that our Models Genesis significantly outperform learning from scratch and existing pre-trained 3D models in all five target 3D applications.
arXiv Detail & Related papers (2020-04-09T20:37:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.