Advancing Multi-Party Dialogue Systems with Speaker-ware Contrastive Learning
- URL: http://arxiv.org/abs/2501.11292v1
- Date: Mon, 20 Jan 2025 06:28:22 GMT
- Title: Advancing Multi-Party Dialogue Systems with Speaker-ware Contrastive Learning
- Authors: Zhongtian Hu, Qi He, Ronghan Li, Meng Zhao, Lifang Wang,
- Abstract summary: We propose Contrastive learning-based Multi-party dialogue Response generation model.
CMR uses self-supervised contrastive learning to better distinguish "who says what"
CMR significantly outperforms state-of-the-art models in multi-party dialogue response tasks.
- Score: 10.678477576849579
- License:
- Abstract: Dialogue response generation has made significant progress, but most research has focused on dyadic dialogue. In contrast, multi-party dialogues involve more participants, each potentially discussing different topics, making the task more complex. Current methods often rely on graph neural networks to model dialogue context, which helps capture the structural dynamics of multi-party conversations. However, these methods are heavily dependent on intricate graph structures and dataset annotations, and they often overlook the distinct speaking styles of participants. To address these challenges, we propose CMR, a Contrastive learning-based Multi-party dialogue Response generation model. CMR uses self-supervised contrastive learning to better distinguish "who says what." Additionally, by comparing speakers within the same conversation, the model captures differences in speaking styles and thematic transitions. To the best of our knowledge, this is the first approach to apply contrastive learning in multi-party dialogue generation. Experimental results show that CMR significantly outperforms state-of-the-art models in multi-party dialogue response tasks.
Related papers
- Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
We pre-train a model that understands the discourse structure of multi-party dialogues, namely, to whom each utterance is replying.
To fully utilize the unlabeled data, we propose to treat the discourse structures as latent variables, then jointly infer them and pre-train the discourse-aware model.
arXiv Detail & Related papers (2023-05-24T14:06:27Z) - deep learning of segment-level feature representation for speech emotion
recognition in conversations [9.432208348863336]
We propose a conversational speech emotion recognition method to deal with capturing attentive contextual dependency and speaker-sensitive interactions.
First, we use a pretrained VGGish model to extract segment-based audio representation in individual utterances.
Second, an attentive bi-directional recurrent unit (GRU) models contextual-sensitive information and explores intra- and inter-speaker dependencies jointly.
arXiv Detail & Related papers (2023-02-05T16:15:46Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
We propose compositional learning for holistic interaction across utterances beyond the sequential contextualization from PrLMs.
We employ domain-adaptive training strategies to help the model adapt to the dialogue domains.
Experimental results show that our method substantially boosts the strong PrLM baselines in four public benchmark datasets.
arXiv Detail & Related papers (2023-01-10T13:18:25Z) - Learning Dialogue Representations from Consecutive Utterances [29.150589618130695]
We introduce Dialogue Sentence Embedding (DSE), a self-supervised contrastive learning method.
DSE learns from dialogues by taking consecutive utterances of the same dialogue as positive pairs for contrastive learning.
We evaluate DSE on five downstream dialogue tasks that examine dialogue representation at different semantic granularities.
arXiv Detail & Related papers (2022-05-26T18:15:13Z) - Back to the Future: Bidirectional Information Decoupling Network for
Multi-turn Dialogue Modeling [80.51094098799736]
We propose Bidirectional Information Decoupling Network (BiDeN) as a universal dialogue encoder.
BiDeN explicitly incorporates both the past and future contexts and can be generalized to a wide range of dialogue-related tasks.
Experimental results on datasets of different downstream tasks demonstrate the universality and effectiveness of our BiDeN.
arXiv Detail & Related papers (2022-04-18T03:51:46Z) - DialAug: Mixing up Dialogue Contexts in Contrastive Learning for Robust
Conversational Modeling [3.3578533367912025]
We propose a framework that incorporates augmented versions of a dialogue context into the learning objective.
We show that our proposed augmentation method outperforms previous data augmentation approaches.
arXiv Detail & Related papers (2022-04-15T23:39:41Z) - Learning from Perturbations: Diverse and Informative Dialogue Generation
with Inverse Adversarial Training [10.17868476063421]
We propose Inverse Adversarial Training (IAT) algorithm for training neural dialogue systems.
IAT encourages the model to be sensitive to the perturbation in the dialogue history and therefore learning from perturbations.
We show that our approach can better model dialogue history and generate more diverse and consistent responses.
arXiv Detail & Related papers (2021-05-31T17:28:37Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
A multi-turn dialogue is composed of multiple utterances from two or more different speaker roles.
In the existing retrieval-based multi-turn dialogue modeling, the pre-trained language models (PrLMs) as encoder represent the dialogues coarsely.
We propose a novel model to fill such a gap by modeling the effective utterance-aware and speaker-aware representations entailed in a dialogue history.
arXiv Detail & Related papers (2020-09-14T15:07:19Z) - Ranking Enhanced Dialogue Generation [77.8321855074999]
How to effectively utilize the dialogue history is a crucial problem in multi-turn dialogue generation.
Previous works usually employ various neural network architectures to model the history.
This paper proposes a Ranking Enhanced Dialogue generation framework.
arXiv Detail & Related papers (2020-08-13T01:49:56Z) - Dialogue-Based Relation Extraction [53.2896545819799]
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE.
We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks.
Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings.
arXiv Detail & Related papers (2020-04-17T03:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.