Disentangled Modeling of Preferences and Social Influence for Group Recommendation
- URL: http://arxiv.org/abs/2501.11342v1
- Date: Mon, 20 Jan 2025 09:03:18 GMT
- Title: Disentangled Modeling of Preferences and Social Influence for Group Recommendation
- Authors: Guangze Ye, Wen Wu, Guoqing Wang, Xi Chen, Hong Zheng, Liang He,
- Abstract summary: Group recommendation (GR) aims to suggest items for a group of users in social networks.
Existing methods either neglect the social influence of individual members or bundle preferences and social influence together.
We propose a novel model based on Disentangled Modeling of Preferences and Social Influence for Group Recommendation (DisRec)
- Score: 16.953172230355268
- License:
- Abstract: The group recommendation (GR) aims to suggest items for a group of users in social networks. Existing work typically considers individual preferences as the sole factor in aggregating group preferences. Actually, social influence is also an important factor in modeling users' contributions to the final group decision. However, existing methods either neglect the social influence of individual members or bundle preferences and social influence together as a unified representation. As a result, these models emphasize the preferences of the majority within the group rather than the actual interaction items, which we refer to as the preference bias issue in GR. Moreover, the self-supervised learning (SSL) strategies they designed to address the issue of group data sparsity fail to account for users' contextual social weights when regulating group representations, leading to suboptimal results. To tackle these issues, we propose a novel model based on Disentangled Modeling of Preferences and Social Influence for Group Recommendation (DisRec). Concretely, we first design a user-level disentangling network to disentangle the preferences and social influence of group members with separate embedding propagation schemes based on (hyper)graph convolution networks. We then introduce a socialbased contrastive learning strategy, selectively excluding user nodes based on their social importance to enhance group representations and alleviate the group-level data sparsity issue. The experimental results demonstrate that our model significantly outperforms state-of-the-art methods on two realworld datasets.
Related papers
- Data-Efficient Pretraining with Group-Level Data Influence Modeling [49.18903821780051]
Group-Level Data Influence Modeling (Group-MATES) is a novel data-efficient pretraining method.
Group-MATES collects oracle group-level influences by locally probing the pretraining model with data sets.
It then fine-tunes a relational data influence model to approximate oracles as relationship-weighted aggregations of individual influences.
arXiv Detail & Related papers (2025-02-20T16:34:46Z) - ComPO: Community Preferences for Language Model Personalization [122.54846260663922]
ComPO is a method to personalize preference optimization in language models.
We collect and release ComPRed, a question answering dataset with community-level preferences from Reddit.
arXiv Detail & Related papers (2024-10-21T14:02:40Z) - Group Robust Preference Optimization in Reward-free RLHF [23.622835830345725]
We propose a novel Group Robust Preference Optimization (GRPO) method to align large language models to individual groups' preferences robustly.
To achieve this, GRPO adaptively and sequentially weights the importance of different groups, prioritizing groups with worse cumulative loss.
We significantly improved performance for the worst-performing groups, reduced loss imbalances across groups, and improved probability accuracies.
arXiv Detail & Related papers (2024-05-30T17:50:04Z) - Balancing User Preferences by Social Networks: A Condition-Guided Social Recommendation Model for Mitigating Popularity Bias [64.73474454254105]
Social recommendation models weave social interactions into their design to provide uniquely personalized recommendation results for users.
Existing social recommendation models fail to address the issues of popularity bias and the redundancy of social information.
We propose a Condition-Guided Social Recommendation Model (named CGSoRec) to mitigate the model's popularity bias.
arXiv Detail & Related papers (2024-05-27T02:45:01Z) - Ranking-based Group Identification via Factorized Attention on Social
Tripartite Graph [68.08590487960475]
We propose a novel GNN-based framework named Contextualized Factorized Attention for Group identification (CFAG)
We devise tripartite graph convolution layers to aggregate information from different types of neighborhoods among users, groups, and items.
To cope with the data sparsity issue, we devise a novel propagation augmentation layer, which is based on our proposed factorized attention mechanism.
arXiv Detail & Related papers (2022-11-02T01:42:20Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Double-Scale Self-Supervised Hypergraph Learning for Group
Recommendation [35.841350982832545]
Group recommendation suffers seriously from the problem of data sparsity.
We propose a self-supervised hypergraph learning framework for group recommendation to achieve two goals.
arXiv Detail & Related papers (2021-09-09T12:19:49Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
Group recommender systems should be able to accurately learn not only users' personal preferences but also preference aggregation strategy.
In this paper, we take Bipartite Graphding Model (BGEM), the self-attention mechanism and Graph Convolutional Networks (GCNs) as basic building blocks to learn group and user representations in a unified way.
arXiv Detail & Related papers (2020-10-02T07:11:19Z) - GroupIM: A Mutual Information Maximization Framework for Neural Group
Recommendation [24.677145454396822]
We study the problem of making item recommendations to ephemeral groups, which comprise users with limited or no historical activities together.
Existing studies target persistent groups with substantial activity history, while ephemeral groups lack historical interactions.
We propose data-driven regularization strategies to exploit both the preference covariance amongst users who are in the same group, as well as the contextual relevance of users' individual preferences to each group.
arXiv Detail & Related papers (2020-06-05T23:18:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.