Technical Report for the Forgotten-by-Design Project: Targeted Obfuscation for Machine Learning
- URL: http://arxiv.org/abs/2501.11525v1
- Date: Mon, 20 Jan 2025 15:07:59 GMT
- Title: Technical Report for the Forgotten-by-Design Project: Targeted Obfuscation for Machine Learning
- Authors: Rickard Brännvall, Laurynas Adomaitis, Olof Görnerup, Anass Sedrati,
- Abstract summary: This paper explores the concept of the Right to be Forgotten (RTBF) within AI systems, contrasting it with traditional data erasure methods.
We introduce Forgotten by Design, a proactive approach to privacy preservation that integrates instance-specific obfuscation techniques.
Our experiments on the CIFAR-10 dataset demonstrate that our techniques reduce privacy risks by at least an order of magnitude while maintaining model accuracy.
- Score: 0.03749861135832072
- License:
- Abstract: The right to privacy, enshrined in various human rights declarations, faces new challenges in the age of artificial intelligence (AI). This paper explores the concept of the Right to be Forgotten (RTBF) within AI systems, contrasting it with traditional data erasure methods. We introduce Forgotten by Design, a proactive approach to privacy preservation that integrates instance-specific obfuscation techniques during the AI model training process. Unlike machine unlearning, which modifies models post-training, our method prevents sensitive data from being embedded in the first place. Using the LIRA membership inference attack, we identify vulnerable data points and propose defenses that combine additive gradient noise and weighting schemes. Our experiments on the CIFAR-10 dataset demonstrate that our techniques reduce privacy risks by at least an order of magnitude while maintaining model accuracy (at 95% significance). Additionally, we present visualization methods for the privacy-utility trade-off, providing a clear framework for balancing privacy risk and model accuracy. This work contributes to the development of privacy-preserving AI systems that align with human cognitive processes of motivated forgetting, offering a robust framework for safeguarding sensitive information and ensuring compliance with privacy regulations.
Related papers
- Advancing Personalized Federated Learning: Integrative Approaches with AI for Enhanced Privacy and Customization [0.0]
This paper proposes a novel approach that enhances PFL with cutting-edge AI techniques.
We present a model that boosts the performance of individual client models and ensures robust privacy-preserving mechanisms.
This work paves the way for a new era of truly personalized and privacy-conscious AI systems.
arXiv Detail & Related papers (2025-01-30T07:03:29Z) - Machine Unlearning Doesn't Do What You Think: Lessons for Generative AI Policy, Research, and Practice [186.055899073629]
Unlearning is often invoked as a solution for removing the effects of targeted information from a generative-AI model.
Unlearning is also proposed as a way to prevent a model from generating targeted types of information in its outputs.
Both of these goals--the targeted removal of information from a model and the targeted suppression of information from a model's outputs--present various technical and substantive challenges.
arXiv Detail & Related papers (2024-12-09T20:18:43Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
Privacy-preserving computer vision is an important emerging problem in machine learning and artificial intelligence.
We present anonymization pipeline that replaces sensitive human subjects in video datasets with synthetic avatars within context.
We also proposeMaskDP to protect non-anonymized but privacy sensitive background information.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Deep Variational Privacy Funnel: General Modeling with Applications in
Face Recognition [3.351714665243138]
We develop a method for privacy-preserving representation learning using an end-to-end training framework.
We apply our model to state-of-the-art face recognition systems.
arXiv Detail & Related papers (2024-01-26T11:32:53Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Privacy Risks in Reinforcement Learning for Household Robots [42.675213619562975]
Privacy emerges as a pivotal concern within the realm of embodied AI, as the robot accesses substantial personal information.
This paper proposes an attack on the training process of the value-based algorithm and the gradient-based algorithm, utilizing gradient inversion to reconstruct states, actions, and supervisory signals.
arXiv Detail & Related papers (2023-06-15T16:53:26Z) - Privacy-preserving Generative Framework Against Membership Inference
Attacks [10.791983671720882]
We design a privacy-preserving generative framework against membership inference attacks.
We first map the source data to the latent space through the VAE model to get the latent code, then perform noise process satisfying metric privacy on the latent code, and finally use the VAE model to reconstruct the synthetic data.
Our experimental evaluation demonstrates that the machine learning model trained with newly generated synthetic data can effectively resist membership inference attacks and still maintain high utility.
arXiv Detail & Related papers (2022-02-11T06:13:30Z) - Semantics-Preserved Distortion for Personal Privacy Protection in Information Management [65.08939490413037]
This paper suggests a linguistically-grounded approach to distort texts while maintaining semantic integrity.
We present two distinct frameworks for semantic-preserving distortion: a generative approach and a substitutive approach.
We also explore privacy protection in a specific medical information management scenario, showing our method effectively limits sensitive data memorization.
arXiv Detail & Related papers (2022-01-04T04:01:05Z) - Anonymizing Machine Learning Models [0.0]
Anonymized data is exempt from obligations set out in regulations such as the EU General Data Protection Regulation.
We propose a method that is able to achieve better model accuracy by using the knowledge encoded within the trained model.
We also demonstrate that our approach has a similar, and sometimes even better ability to prevent membership attacks as approaches based on differential privacy.
arXiv Detail & Related papers (2020-07-26T09:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.