Explain-Query-Test: Self-Evaluating LLMs Via Explanation and Comprehension Discrepancy
- URL: http://arxiv.org/abs/2501.11721v1
- Date: Mon, 20 Jan 2025 20:07:18 GMT
- Title: Explain-Query-Test: Self-Evaluating LLMs Via Explanation and Comprehension Discrepancy
- Authors: Saeid Asgari Taghanaki, Joao Monteiro,
- Abstract summary: Large language models (LLMs) have demonstrated remarkable proficiency in generating detailed and coherent explanations.
To assess the level of comprehension of a model relative to the content it generates, we implemented a self-evaluation pipeline.
We refer to this self-evaluation approach as Explain-Query-Test (EQT)
- Score: 3.0429215246859465
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable proficiency in generating detailed and coherent explanations of complex concepts. However, the extent to which these models truly comprehend the concepts they articulate remains unclear. To assess the level of comprehension of a model relative to the content it generates, we implemented a self-evaluation pipeline where models: (i) given a topic generate an excerpt with information about the topic, (ii) given an excerpt generate question-answer pairs, and finally (iii) given a question generate an answer. We refer to this self-evaluation approach as Explain-Query-Test (EQT). Interestingly, the accuracy on generated questions resulting from running the EQT pipeline correlates strongly with the model performance as verified by typical benchmarks such as MMLU-Pro. In other words, EQT's performance is predictive of MMLU-Pro's, and EQT can be used to rank models without the need for any external source of evaluation data other than lists of topics of interest. Moreover, our results reveal a disparity between the models' ability to produce detailed explanations and their performance on questions related to those explanations. This gap highlights fundamental limitations in the internal knowledge representation and reasoning abilities of current LLMs. We release the code at https://github.com/asgsaeid/EQT.
Related papers
- Estimating Knowledge in Large Language Models Without Generating a Single Token [12.913172023910203]
Current methods to evaluate knowledge in large language models (LLMs) query the model and then evaluate its generated responses.
In this work, we ask whether evaluation can be done before the model has generated any text.
Experiments with a variety of LLMs show that KEEN, a simple probe trained over internal subject representations, succeeds at both tasks.
arXiv Detail & Related papers (2024-06-18T14:45:50Z) - Optimizing Language Model's Reasoning Abilities with Weak Supervision [48.60598455782159]
We present textscPuzzleBen, a weakly supervised benchmark that comprises 25,147 complex questions, answers, and human-generated rationales.
A unique aspect of our dataset is the inclusion of 10,000 unannotated questions, enabling us to explore utilizing fewer supersized data to boost LLMs' inference capabilities.
arXiv Detail & Related papers (2024-05-07T07:39:15Z) - Evaluating Consistency and Reasoning Capabilities of Large Language Models [0.0]
Large Language Models (LLMs) are extensively used today across various sectors, including academia, research, business, and finance.
Despite their widespread adoption, these models often produce incorrect and misleading information, exhibiting a tendency to hallucinate.
This paper aims to evaluate and compare the consistency and reasoning capabilities of both public and proprietary LLMs.
arXiv Detail & Related papers (2024-04-25T10:03:14Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
Question and answer generation (QAG) consists of generating a set of question-answer pairs given a context.
In this paper, we establish baselines with three different QAG methodologies that leverage sequence-to-sequence language model (LM) fine-tuning.
Experiments show that an end-to-end QAG model, which is computationally light at both training and inference times, is generally robust and outperforms other more convoluted approaches.
arXiv Detail & Related papers (2023-05-26T14:59:53Z) - A Mechanistic Interpretation of Arithmetic Reasoning in Language Models
using Causal Mediation Analysis [128.0532113800092]
We present a mechanistic interpretation of Transformer-based LMs on arithmetic questions.
This provides insights into how information related to arithmetic is processed by LMs.
arXiv Detail & Related papers (2023-05-24T11:43:47Z) - Benchmarking Faithfulness: Towards Accurate Natural Language
Explanations in Vision-Language Tasks [0.0]
Natural language explanations (NLEs) promise to enable the communication of a model's decision-making in an easily intelligible way.
While current models successfully generate convincing explanations, it is an open question how well the NLEs actually represent the reasoning process of the models.
We propose three faithfulness metrics: Attribution-Similarity, NLE-Sufficiency, and NLE-Comprehensiveness.
arXiv Detail & Related papers (2023-04-03T08:24:10Z) - Entailment Tree Explanations via Iterative Retrieval-Generation Reasoner [56.08919422452905]
We propose an architecture called Iterative Retrieval-Generation Reasoner (IRGR)
Our model is able to explain a given hypothesis by systematically generating a step-by-step explanation from textual premises.
We outperform existing benchmarks on premise retrieval and entailment tree generation, with around 300% gain in overall correctness.
arXiv Detail & Related papers (2022-05-18T21:52:11Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
We propose a framework for building interpretable systems that learn to solve complex tasks by decomposing them into simpler ones solvable by existing models.
We use this framework to build ModularQA, a system that can answer multi-hop reasoning questions by decomposing them into sub-questions answerable by a neural factoid single-span QA model and a symbolic calculator.
arXiv Detail & Related papers (2020-09-01T23:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.