The Value of Nothing: Multimodal Extraction of Human Values Expressed by TikTok Influencers
- URL: http://arxiv.org/abs/2501.11770v1
- Date: Mon, 20 Jan 2025 22:21:18 GMT
- Title: The Value of Nothing: Multimodal Extraction of Human Values Expressed by TikTok Influencers
- Authors: Alina Starovolsky-Shitrit, Alon Neduva, Naama Appel Doron, Ella Daniel, Oren Tsur,
- Abstract summary: In this paper, we extract implicit values from TikTok movies uploaded by online influencers targeting children and adolescents.
We curated a dataset of hundreds of TikTok movies and annotated them according to the Schwartz Theory of Personal Values.
Our results pave the way to further research on influence and value transmission in video-based social platforms.
- Score: 2.3592914313389253
- License:
- Abstract: Societal and personal values are transmitted to younger generations through interaction and exposure. Traditionally, children and adolescents learned values from parents, educators, or peers. Nowadays, social platforms serve as a significant channel through which youth (and adults) consume information, as the main medium of entertainment, and possibly the medium through which they learn different values. In this paper we extract implicit values from TikTok movies uploaded by online influencers targeting children and adolescents. We curated a dataset of hundreds of TikTok movies and annotated them according to the Schwartz Theory of Personal Values. We then experimented with an array of Masked and Large language model, exploring how values can be detected. Specifically, we considered two pipelines -- direct extraction of values from video and a 2-step approach in which videos are first converted to elaborated scripts and then values are extracted. Achieving state-of-the-art results, we find that the 2-step approach performs significantly better than the direct approach and that using a trainable Masked Language Model as a second step significantly outperforms a few-shot application of a number of Large Language Models. We further discuss the impact of fine-tuning and compare the performance of the different models on identification of values present or contradicted in the TikTok. Finally, we share the first values-annotated dataset of TikTok videos. Our results pave the way to further research on influence and value transmission in video-based social platforms.
Related papers
- MAMA: Meta-optimized Angular Margin Contrastive Framework for Video-Language Representation Learning [34.259833094575285]
MAMA is a new approach to learning video-language representations by utilizing a contrastive objective with a subtractive angular margin.
MAMA improves video-language representations and achieve superior performances on commonly used video question answering and text-video retrieval datasets.
arXiv Detail & Related papers (2024-07-04T09:52:17Z) - Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Grounding [108.79026216923984]
Video grounding aims to localize a-temporal section in a video corresponding to an input text query.
This paper addresses a critical limitation in current video grounding methodologies by introducing an Open-Vocabulary Spatio-Temporal Video Grounding task.
arXiv Detail & Related papers (2023-12-31T13:53:37Z) - Hate Speech and Offensive Language Detection using an Emotion-aware
Shared Encoder [1.8734449181723825]
Existing works on hate speech and offensive language detection produce promising results based on pre-trained transformer models.
This paper addresses a multi-task joint learning approach which combines external emotional features extracted from another corpora.
Our findings demonstrate that emotional knowledge helps to more reliably identify hate speech and offensive language across datasets.
arXiv Detail & Related papers (2023-02-17T09:31:06Z) - Misinformation Detection in Social Media Video Posts [0.4724825031148411]
Short-form video by social media platforms has become a critical challenge for social media providers.
We develop methods to detect misinformation in social media posts, exploiting modalities such as video and text.
We collect 160,000 video posts from Twitter, and leverage self-supervised learning to learn expressive representations of joint visual and textual data.
arXiv Detail & Related papers (2022-02-15T20:14:54Z) - TACo: Token-aware Cascade Contrastive Learning for Video-Text Alignment [68.08689660963468]
A new algorithm called Token-Aware Cascade contrastive learning (TACo) improves contrastive learning using two novel techniques.
We set new state-of-the-art on three public text-video retrieval benchmarks of YouCook2, MSR-VTT and ActivityNet.
arXiv Detail & Related papers (2021-08-23T07:24:57Z) - VidLanKD: Improving Language Understanding via Video-Distilled Knowledge
Transfer [76.3906723777229]
We present VidLanKD, a video-language knowledge distillation method for improving language understanding.
We train a multi-modal teacher model on a video-text dataset, and then transfer its knowledge to a student language model with a text dataset.
In our experiments, VidLanKD achieves consistent improvements over text-only language models and vokenization models.
arXiv Detail & Related papers (2021-07-06T15:41:32Z) - VALUE: A Multi-Task Benchmark for Video-and-Language Understanding
Evaluation [124.02278735049235]
VALUE benchmark aims to cover a broad range of video genres, video lengths, data volumes, and task difficulty levels.
We evaluate various baseline methods with and without large-scale VidL pre-training.
The significant gap between our best model and human performance calls for future study for advanced VidL models.
arXiv Detail & Related papers (2021-06-08T18:34:21Z) - Watch and Learn: Mapping Language and Noisy Real-world Videos with
Self-supervision [54.73758942064708]
We teach machines to understand visuals and natural language by learning the mapping between sentences and noisy video snippets without explicit annotations.
For training and evaluation, we contribute a new dataset ApartmenTour' that contains a large number of online videos and subtitles.
arXiv Detail & Related papers (2020-11-19T03:43:56Z) - Content-based Analysis of the Cultural Differences between TikTok and
Douyin [95.32409577885645]
Short-form video social media shifts away from the traditional media paradigm by telling the audience a dynamic story to attract their attention.
In particular, different combinations of everyday objects can be employed to represent a unique scene that is both interesting and understandable.
Offered by the same company, TikTok and Douyin are popular examples of such new media that has become popular in recent years.
The hypothesis that they express cultural differences together with media fashion and social idiosyncrasy is the primary target of our research.
arXiv Detail & Related papers (2020-11-03T01:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.