Med-R$^2$: Crafting Trustworthy LLM Physicians through Retrieval and Reasoning of Evidence-Based Medicine
- URL: http://arxiv.org/abs/2501.11885v3
- Date: Thu, 23 Jan 2025 07:45:20 GMT
- Title: Med-R$^2$: Crafting Trustworthy LLM Physicians through Retrieval and Reasoning of Evidence-Based Medicine
- Authors: Keer Lu, Zheng Liang, Da Pan, Shusen Zhang, Xin Wu, Weipeng Chen, Zenan Zhou, Guosheng Dong, Bin Cui, Wentao Zhang,
- Abstract summary: We introduce Med-R2, a novel framework for Large Language Models (LLMs) that adheres to the Evidence-Based Medicine (EBM) process.
Our experiments indicate that Med-R2 achieves a 14.87% improvement over vanilla RAG methods and even a 3.59% enhancement compared to fine-tuning strategies.
- Score: 39.80703772263271
- License:
- Abstract: In recent years, Large Language Models (LLMs) have exhibited remarkable capabilities in clinical scenarios. However, despite their potential, existing works face challenges when applying LLMs to medical settings. Strategies relying on training with medical datasets are highly cost-intensive and may suffer from outdated training data. Leveraging external knowledge bases is a suitable alternative, yet it faces obstacles such as limited retrieval precision and poor effectiveness in answer extraction. These issues collectively prevent LLMs from demonstrating the expected level of proficiency in mastering medical expertise. To address these challenges, we introduce Med-R^2, a novel LLM physician framework that adheres to the Evidence-Based Medicine (EBM) process, efficiently integrating retrieval mechanisms as well as the selection and reasoning processes of evidence, thereby enhancing the problem-solving capabilities of LLMs in healthcare scenarios and fostering a trustworthy LLM physician. Our comprehensive experiments indicate that Med-R^2 achieves a 14.87\% improvement over vanilla RAG methods and even a 3.59\% enhancement compared to fine-tuning strategies, without incurring additional training costs.
Related papers
- SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG)
Existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries.
We propose Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm.
arXiv Detail & Related papers (2024-06-17T06:48:31Z) - A Survey on Large Language Models from General Purpose to Medical Applications: Datasets, Methodologies, and Evaluations [5.265452667976959]
This survey systematically summarizes how to train medical LLMs based on open-source general LLMs.
It covers (a) how to acquire training corpus and construct customized medical training sets, (b) how to choose an appropriate training paradigm, and (d) existing challenges and promising research directions.
arXiv Detail & Related papers (2024-06-14T02:42:20Z) - JMLR: Joint Medical LLM and Retrieval Training for Enhancing Reasoning and Professional Question Answering Capability [8.476124605775976]
Large Language Models (LLMs) have demonstrated a remarkable potential in medical knowledge acquisition and question-answering.
LLMs can potentially hallucinate and yield factually incorrect outcomes, even with domain-specific pretraining.
We introduce JMLR (for Jointly trains LLM and information Retrieval) during the fine-tuning phase to address hallucinations.
arXiv Detail & Related papers (2024-02-27T21:01:41Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
We propose ChiMed-GPT, a benchmark LLM designed explicitly for Chinese medical domain.
ChiMed-GPT undergoes a comprehensive training regime with pre-training, SFT, and RLHF.
We analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients.
arXiv Detail & Related papers (2023-11-10T12:25:32Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
Large language models (LLMs) have received substantial attention due to their capabilities for understanding and generating human language.
This review aims to provide a detailed overview of the development and deployment of LLMs in medicine.
arXiv Detail & Related papers (2023-11-09T02:55:58Z) - MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering [45.84961106102445]
Large Language Models (LLMs) often perform poorly on domain-specific tasks such as medical question answering (QA)
We propose a comprehensive retrieval strategy to extract medical facts from an external knowledge base, and then inject them into the LLM's query prompt.
Our retrieval-augmented Vicuna-7B model exhibited an accuracy improvement from 44.46% to 48.54%.
arXiv Detail & Related papers (2023-09-27T21:26:03Z) - Aligning Large Language Models for Clinical Tasks [0.0]
Large Language Models (LLMs) have demonstrated remarkable adaptability, showcasing their capacity to excel in tasks for which they were not explicitly trained.
We propose an alignment strategy for medical question-answering, known as 'expand-guess-refine'
A preliminary analysis of this method demonstrated outstanding performance, achieving a score of 70.63% on a subset of questions sourced from the USMLE dataset.
arXiv Detail & Related papers (2023-09-06T10:20:06Z) - An Automatic Evaluation Framework for Multi-turn Medical Consultations
Capabilities of Large Language Models [22.409334091186995]
Large language models (LLMs) often suffer from hallucinations, leading to overly confident but incorrect judgments.
This paper introduces an automated evaluation framework that assesses the practical capabilities of LLMs as virtual doctors during multi-turn consultations.
arXiv Detail & Related papers (2023-09-05T09:24:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.