Contrastive Masked Autoencoders for Character-Level Open-Set Writer Identification
- URL: http://arxiv.org/abs/2501.11895v1
- Date: Tue, 21 Jan 2025 05:15:10 GMT
- Title: Contrastive Masked Autoencoders for Character-Level Open-Set Writer Identification
- Authors: Xiaowei Jiang, Wenhao Ma, Yiqun Duan, Thomas Do, Chin-Teng Lin,
- Abstract summary: This paper introduces Contrastive Masked Auto-Encoders (CMAE) for Character-level Open-Set Writer Identification.
We merge Masked Auto-Encoders (MAE) with Contrastive Learning (CL) to simultaneously and respectively capture sequential information and distinguish diverse handwriting styles.
Our model achieves state-of-the-art results on the CASIA online handwriting dataset, reaching an impressive precision rate of 89.7%.
- Score: 25.996617568144675
- License:
- Abstract: In the realm of digital forensics and document authentication, writer identification plays a crucial role in determining the authors of documents based on handwriting styles. The primary challenge in writer-id is the "open-set scenario", where the goal is accurately recognizing writers unseen during the model training. To overcome this challenge, representation learning is the key. This method can capture unique handwriting features, enabling it to recognize styles not previously encountered during training. Building on this concept, this paper introduces the Contrastive Masked Auto-Encoders (CMAE) for Character-level Open-Set Writer Identification. We merge Masked Auto-Encoders (MAE) with Contrastive Learning (CL) to simultaneously and respectively capture sequential information and distinguish diverse handwriting styles. Demonstrating its effectiveness, our model achieves state-of-the-art (SOTA) results on the CASIA online handwriting dataset, reaching an impressive precision rate of 89.7%. Our study advances universal writer-id with a sophisticated representation learning approach, contributing substantially to the ever-evolving landscape of digital handwriting analysis, and catering to the demands of an increasingly interconnected world.
Related papers
- Representing Online Handwriting for Recognition in Large Vision-Language
Models [8.344510330567495]
We propose a novel tokenized representation of digital ink (online handwriting) that includes both a time-ordered sequence of strokes as text, and as image.
We show that this representation yields results comparable to or better than state-of-the-art online handwriting recognizers.
arXiv Detail & Related papers (2024-02-23T13:11:10Z) - Class-Aware Mask-Guided Feature Refinement for Scene Text Recognition [56.968108142307976]
We propose a novel approach called Class-Aware Mask-guided feature refinement (CAM)
Our approach introduces canonical class-aware glyph masks to suppress background and text style noise.
By enhancing the alignment between the canonical mask feature and the text feature, the module ensures more effective fusion.
arXiv Detail & Related papers (2024-02-21T09:22:45Z) - The Chosen One: Consistent Characters in Text-to-Image Diffusion Models [71.15152184631951]
We propose a fully automated solution for consistent character generation with the sole input being a text prompt.
Our method strikes a better balance between prompt alignment and identity consistency compared to the baseline methods.
arXiv Detail & Related papers (2023-11-16T18:59:51Z) - On Task-personalized Multimodal Few-shot Learning for Visually-rich
Document Entity Retrieval [59.25292920967197]
Few-shot document entity retrieval (VDER) is an important topic in industrial NLP applications.
FewVEX is a new dataset to boost future research in the field of entity-level few-shot VDER.
We present a task-aware meta-learning based framework, with a central focus on achieving effective task personalization.
arXiv Detail & Related papers (2023-11-01T17:51:43Z) - Recognizing Handwriting Styles in a Historical Scanned Document Using
Unsupervised Fuzzy Clustering [0.0]
Unique handwriting styles may be dissimilar in a blend of several factors including character size, stroke width, loops, ductus, slant angles, and cursive ligatures.
Previous work on labeled data with Hidden Markov models, support vector machines, and semi-supervised recurrent neural networks have provided moderate to high success.
In this study, we successfully detect hand shifts in a historical manuscript through fuzzy soft clustering in combination with linear principal component analysis.
arXiv Detail & Related papers (2022-10-30T09:07:51Z) - PART: Pre-trained Authorship Representation Transformer [64.78260098263489]
Authors writing documents imprint identifying information within their texts: vocabulary, registry, punctuation, misspellings, or even emoji usage.
Previous works use hand-crafted features or classification tasks to train their authorship models, leading to poor performance on out-of-domain authors.
We propose a contrastively trained model fit to learn textbfauthorship embeddings instead of semantics.
arXiv Detail & Related papers (2022-09-30T11:08:39Z) - Letter-level Online Writer Identification [86.13203975836556]
We focus on a novel problem, letter-level online writer-id, which requires only a few trajectories of written letters as identification cues.
A main challenge is that a person often writes a letter in different styles from time to time.
We refer to this problem as the variance of online writing styles (Var-O-Styles)
arXiv Detail & Related papers (2021-12-06T07:21:53Z) - Exploiting Multi-Scale Fusion, Spatial Attention and Patch Interaction
Techniques for Text-Independent Writer Identification [15.010153819096056]
In this paper, three different deep learning techniques - spatial attention mechanism, multi-scale feature fusion and patch-based CNN were proposed to capture the difference between each writer's handwriting.
The proposed methods outperforms various state-of-the-art methodologies on word-level and page-level writer identification methods on three publicly available datasets.
arXiv Detail & Related papers (2021-11-20T14:41:36Z) - Handwriting Recognition with Novelty [0.0]
In handwritten documents, novelty can be a change in writer, character attributes, writing attributes, or overall document appearance.
This paper formalizes the domain of handwriting recognition with novelty, describes a baseline agent, introduces an evaluation protocol with benchmark data, and provides experimentation to set the state-of-the-art.
arXiv Detail & Related papers (2021-05-13T23:01:07Z) - Separating Content from Style Using Adversarial Learning for Recognizing
Text in the Wild [103.51604161298512]
We propose an adversarial learning framework for the generation and recognition of multiple characters in an image.
Our framework can be integrated into recent recognition methods to achieve new state-of-the-art recognition accuracy.
arXiv Detail & Related papers (2020-01-13T12:41:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.