A Contrastive Framework with User, Item and Review Alignment for Recommendation
- URL: http://arxiv.org/abs/2501.11963v1
- Date: Tue, 21 Jan 2025 08:21:45 GMT
- Title: A Contrastive Framework with User, Item and Review Alignment for Recommendation
- Authors: Hoang V. Dong, Yuan Fang, Hady W. Lauw,
- Abstract summary: We introduce a Review-centric Contrastive Alignment Framework for Recommendation (ReCAFR)
ReCAFR incorporates reviews into the core learning process, ensuring alignment among user, item, and review representations.
Specifically, we leverage two self-supervised contrastive strategies that exploit review-based augmentation to alleviate sparsity.
- Score: 25.76462243743591
- License:
- Abstract: Learning effective latent representations for users and items is the cornerstone of recommender systems. Traditional approaches rely on user-item interaction data to map users and items into a shared latent space, but the sparsity of interactions often poses challenges. While leveraging user reviews could mitigate this sparsity, existing review-aware recommendation models often exhibit two key limitations. First, they typically rely on reviews as additional features, but reviews are not universal, with many users and items lacking them. Second, such approaches do not integrate reviews into the user-item space, leading to potential divergence or inconsistency among user, item, and review representations. To overcome these limitations, our work introduces a Review-centric Contrastive Alignment Framework for Recommendation (ReCAFR), which incorporates reviews into the core learning process, ensuring alignment among user, item, and review representations within a unified space. Specifically, we leverage two self-supervised contrastive strategies that not only exploit review-based augmentation to alleviate sparsity, but also align the tripartite representations to enhance robustness. Empirical studies on public benchmark datasets demonstrate the effectiveness and robustness of ReCAFR.
Related papers
- Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
We propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions.
For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual semi-bandit in the PVisRec setting.
arXiv Detail & Related papers (2025-02-05T17:14:45Z) - Online Clustering of Dueling Bandits [59.09590979404303]
We introduce the first "clustering of dueling bandit algorithms" to enable collaborative decision-making based on preference feedback.
We propose two novel algorithms: (1) Clustering of Linear Dueling Bandits (COLDB) which models the user reward functions as linear functions of the context vectors, and (2) Clustering of Neural Dueling Bandits (CONDB) which uses a neural network to model complex, non-linear user reward functions.
arXiv Detail & Related papers (2025-02-04T07:55:41Z) - Proactive Recommendation in Social Networks: Steering User Interest via Neighbor Influence [54.13541697801396]
We propose a new task named Proactive Recommendation in Social Networks (PRSN)
PRSN indirectly steers users' interest by utilizing the influence of social neighbors.
We propose a Neighbor Interference Recommendation (NIRec) framework with two key modules.
arXiv Detail & Related papers (2024-09-13T15:53:40Z) - Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback.
The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied.
We focus on how the evaluation of task-oriented dialogue systems ( TDSs) is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated.
arXiv Detail & Related papers (2024-04-19T16:45:50Z) - Debiasing Recommendation by Learning Identifiable Latent Confounders [49.16119112336605]
Confounding bias arises due to the presence of unmeasured variables that can affect both a user's exposure and feedback.
Existing methods either (1) make untenable assumptions about these unmeasured variables or (2) directly infer latent confounders from users' exposure.
We propose a novel method, i.e., identifiable deconfounder (iDCF), which leverages a set of proxy variables to resolve the aforementioned non-identification issue.
arXiv Detail & Related papers (2023-02-10T05:10:26Z) - Exploiting Rich Textual User-Product Context for Improving Sentiment
Analysis [21.840121866597563]
We propose a method to explicitly employ historical reviews belonging to the same user/product to initialize representations.
Experiments on IMDb, Yelp-2013 and Yelp-2014 benchmarks show that our approach substantially outperforms previous state-of-the-art.
arXiv Detail & Related papers (2022-12-17T14:57:52Z) - Causal Disentanglement with Network Information for Debiased
Recommendations [34.698181166037564]
Recent research proposes to debias by modeling a recommender system from a causal perspective.
The critical challenge in this setting is accounting for the hidden confounders.
We propose to leverage network information (i.e., user-social and user-item networks) to better approximate hidden confounders.
arXiv Detail & Related papers (2022-04-14T20:55:11Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - How Useful are Reviews for Recommendation? A Critical Review and
Potential Improvements [8.471274313213092]
We investigate a growing body of work that seeks to improve recommender systems through the use of review text.
Our initial findings reveal several discrepancies in reported results, partly due to copying results across papers despite changes in experimental settings or data pre-processing.
Further investigation calls for discussion on a much larger problem about the "importance" of user reviews for recommendation.
arXiv Detail & Related papers (2020-05-25T16:30:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.